Electrons are transferred sequentially between the two photosystems, with photosystem I acting to generate NADPH and photosystem II acting to generate ATP. The pathway of electron flow starts at photosystem II, which is homologous to the photosynthetic reaction center of R. viridis already described.
Wind is usually caused by a difference in pressure that causes wind to be "Pushed" on the surface of earth. Air usually moves from high to low pressure and that is what we call wind. Please hit the thanks button if this helped :)
Using the Equation:
v² = vi² + 2 · a · s → Eq.1
where,
v = final velocity
vi = initial velocity
a = acceleration
s = distance
<span><span>We know that vi = 0 because the ball was at rest initially.
</span><span>
Therefore,
Solving Eq.1 for acceleration,
</span></span> v² = vi² + 2 · a · s
v² = 0 + 2 · a · s
v² = 2 · a · s
Rearranging for a,
a = v ²/2·<span>s
Substituting the values,
a = 46</span>²/2×1<span>
a = 1058 m/s</span>²
<span>Now applying Newton's 2nd law of motion,
</span>
<span>F = ma
= 0.145</span>×<span>1058
F = 153.4 N</span>
<h3>
Answer:</h3>
1.3 Amps
<h3>
Explanation:</h3>
<u>We are given;</u>
A circuit with resistors, R1 and R2
R1 = 7 Ω
R2 = 11 Ω
Voltage = 24 V
We are required to calculate the current in the circuit.
<h3>Step 1: We need to find the effective resistance.</h3>
When resistors are arranged in series, the effective resistance is calculated by;
Rt = R₁ + R₂ + R₃ + ..........Rₙ
Therefore;
Total resistance = 7 + 11
= 18 Ω
<h3>Step 2: Calculate the current in the circuit</h3>
From the ohm's law;
V = IR
Rearranging the formula;
I = V/R
Thus;
I = 24 V ÷ 18 Ω
= 1.333 Amps
= 1.3 Amps
Thus, the current in the circuit is 1.3 Amps