Answer:
They move farther apart
Explanation:
When objects heat up they expand for example heating up a balloon makes it expand
Answer:
T=4.24 N.m
Explanation:
Torque is equal to force for distance for sinus of the angle between the direction of the force and the distance, the distance between the mass and the pivot is 1 m, and to obtain the force that is the mass for the gravity in this case, we need to know the component that produces a torque in the pivot
F=0.5 kg* 9.8 m/
= 4.9 N
and we decompose the force in parallel direction to the rod and perpendicular direction to the rod, the magnitude that produces torque is the perpendicular component, because the torque is in function of the sinus
so, we obtain -> Fy= 4.9 N*sin(60)= 4.24 N
and, T= (4.24 N)*(1 m)*(Sin(90))= 4.24 N.m
anothe way to do it is,
T= (4.9 N)*(1 m)*(Sin(60))= 4.24 N.m, and we obtain the same result
Answer:
I want to say your answer is A) an ocean wave approaching the shore at an angle. But not 100% sure. I'm so sorry if it's wrong I really tried to figure it out.
Explanation:
Refraction of waves involves a change in the direction of waves as they pass from one medium to another. Refaction , or the bending of the path of the waves, is accompanied by a change in speed and wavelength of the waves. Thus, if water waves are passing from deep water into shallow water, they will slow down. ( This is what I read on google maybe it'll help you out).
Answer:
a) v = √ 2gL abd b) θ = 45º
Explanation:
a) for this part we use the law of conservation of energy,
Highest starting point
Em₀ = U = mg h
Final point. Lower
Em₂ = ½ m v²
Em₀ = Em₂
m g h = ½ m v²
v = √2g h
v = √ 2gL
b) the definition of power is the relationship between work and time, but work is the product of force by displacement
P = W / t = F. d / t = F. v
If we use Newton's second law, with one axis of the tangential reference system to the trajectory and the other perpendicular, in the direction of the rope, the only force we have to break down is the weight
sin θ = Wt / W
Wt = W sin θ
This force is parallel to the movement and also to the speed, whereby the scalar product is reduced to the ordinary product
P = F v
The equation that describes the pendulum's motion is
θ = θ₀ cos (wt)
Let's replace
P = (W sin θ) θ₀ cos (wt)
P = W θ₀ sint θ cos (wt)
We use the equation of rotational kinematics
θ = wt
P = Wθ₀ sin θ cos θ
Let's use
sin 2θ = 2 sin θ cos θ
P = Wθ₀/2 sin 2θ
This expression is maximum when the sine has a value of one (sin 2θ = 1), which occurs for 90º,
2θ = 90
θ = 45º
Answer:
322 kJ
Explanation:
The work is the energy that a force produces when realizes a displacement. So, for a gas, it occurs when it expands or when it compress.
When the gas expands it realizes work, so the work is positive, when it compress, it's suffering work, so the work is negative.
For a constant pressure, the work can be calcutated by:
W = pxΔV, where W is the work, p is the pressure, and ΔV is the volume variation. To find the work in Joules, the pressure must be in Pascal (1 atm = 101325 Pa), and the volume in m³ (1 L = 0.001 m³), so:
p = 60 atm = 6.08x10⁶ Pa
ΔV = 82.0 - 29.0 = 53 L = 0.053 m³
W = 6.08x10⁶x0.053
W = 322x10³ J
W = 322 kJ