Answer:
a) 4.9 s
b) 167.8 m
Explanation:
Hello!
To solve this question we need to make use of the equations of motion of both the motorcycle xm(t) and the car xc(t) at t=5
Let us consider the position of the motorcycle at t=5 as the origin, that is:
xm(t+5) = vt + (1/2)at^2
xc(t+5) = vt + 60 m
where v = 22.0m/s and a=5m/s^2
We are looking for the time t' when the position of the car and the motorcycle are the same:
xm(t'+5)=xc(t'+5)
vt' + (1/2)at'^2 = vt' +60m
t' = √(120 m /a) = 4.89898... s
Since we are considering the origin of the cooordinate system at the position when the motorcycle starts to accelerate, the distance travelled by the motorcycle until it catches the car is given by:
xm(t'+5)= vt' + (1/2)at'^2
xm(9.89898s) = (22 * 9.89898 + 2.5 * 9.89898^2)m
xm(9.89898s)= 167.777... m
Explanation:
Linear acceleration is a type of acceleration of a body along a straight path or line.
Acceleration is defined as the rate of change of velocity with time.
Acceleration = 
There are different types of acceleration .
- linear acceleration is used to describe the rate of change of velocity of a body along a straight path with time.
- centripetal acceleration is the rate of change of velocity of a body traveling along a circular path with time. It is directed towards the center.
- Angular acceleration is the rate of change of angular velocity.
Learn more:
Acceleration brainly.com/question/3820012
#learnwithBrainly
Answer:negative slope or gradient I think
Explanation:
Answer:
D) intermolecular attraction deceased
Answer:
1. The elephant has more kinetic energy at this speed and mass. It has 4,500 J more KE.
2. The elephant would have to go at a speed of 2.5 m/s to reach the same KE as the cheetah.
Explanation:
You would use the formula KE=1/2mv^2.
This formula would be filled in and completed twice, once for the elephant and once for the cheetah.
Cheetah:
KE = 1/2 (40) (25) ^2
KE = 12,500 J
Elephant:
KE = 1/2 (4,000) (2) ^2
KE = 8,000 J
This shows that the cheetah has more KE.
Then you would subtract the elephants amount of J from the cheetahs to find the difference.
Difference = 12,500 J - 8,000 J
Difference = 4,500 J
I hoped this helped with the first part :)
For the second part:
To find the speed the elephant would have to run you would fill in and complete the equation once more with different distance results.
KE = 1/2 (4,000) (2.5) ^2
KE= 12,500 J