True because it has "falling" ability
a.
The work done by a constant force along a rectilinear motion when the force and the displacement vector are not colinear is given by:

where F is the magnitude of the force, theta is the angle between them and d is the distance.
The problen gives the following data:
The magnitude of the force 750 N.
The angle between the force and the displacement which is 25°
The distance, 26 m.
Plugging this in the formula we have:

Therefore the work done is 17673 J.
b)
The power is given by:

the problem states that the time it takes is 6 s. Then:

Therefore the power is 2945.5 W
Answer:
a) 4.49Hz
b) 0.536kg
c) 2.57s
Explanation:
This problem can be solved by using the equation for he position and velocity of an object in a mass-string system:

for some time t you have:
x=0.134m
v=-12.1m/s
a=-107m/s^2
If you divide the first equation and the third equation, you can calculate w:

with this value you can compute the frequency:
a)

b)
the mass of the block is given by the formula:

c) to find the amplitude of the motion you need to know the time t. This can computed by dividing the equation for v with the equation for x and taking the arctan:

Finally, the amplitude is:

Answer:
Solenoid's inductance is 1.11 × 10^-8H
The average emf around the solenoid is 1.3 × 10^-5V
Explanation: Please see the attachments below
Complete question is:
A 1200 kg car reaches the top of a 100 m high hill at A with a speed vA. What is the value of vA that will allow the car to coast in neutral so as to just reach the top of the 150 m high hill at B with vB = 0 m/s. Neglect friction.
Answer:
(V_A) = 31.32 m/s
Explanation:
We are given;
car's mass, m = 1200 kg
h_A = 100 m
h_B = 150 m
v_B = 0 m/s
From law of conservation of energy,
the distance from point A to B is;
h = 150m - 100 m = 50 m
From Newton's equations of motion;
v² = u² + 2gh
Thus;
(V_B)² = (V_A)² + (-2gh)
(negative next to g because it's going against gravity)
Thus;
(V_B)² = (V_A)² - (2gh)
Plugging in the relevant values;
0² = (V_A)² - 2(9.81 × 50)
(V_A) = √981
(V_A) = 31.32 m/s