Kinetic Energy,K.E=1/2MV²
mass,m=16kg
velocity,v=4m/s
K.E=1/2×16×4²
=128kgm²/s²
=128 Joules
Answer:
The value of the distance is
.
Explanation:
The velocity of a particle(v) executing SHM is

where,
is the angular frequency,
is the amplitude of the oscillation and
is the displacement of the particle at any instant of time.
The velocity of the particle will be maximum when the particle will cross its equilibrium position, i.e.,
.
The maximum velocity(
) is

Divide equation (1) by equation(2).

Given,
and
. Substitute these values in equation (3).

Soft target by impact and its contribution to indirect bone fractures.
Answer:
Going by EM SPECTRUM WE HAVE
radio waves, microwaves, infrared, VISIBLE LIGHT, ultraviolet, X-rays, GAMMA RAYS
Explanation:
BECAUSE
V= WAVELENGTH/ FREQUENCY
AS FREQUENCY INCREASES WAVELENGTH DECREASE AN VICE VERSA
Answer:
0.51 m
Explanation:
Using the principle of conservation of energy, change in potential energy equals to the change in kinetic energy of the spring.
Kinetic energy, KE=½kx²
Where k is spring constant and x is the compression of spring
Potential energy, PE=mgh
Where g is acceleration due to gravity, h is height and m is mass
Equating KE=PE
mgh=½kx²
Making x the subject of formula

Substituting 9.81 m/s² for g, 1300 kg for m, 10m for h and 1000000 for k then
