Overcurrent protective devices are normally installed in a branch circuit from where the conductors receive their supply.
<h3>What is resistance?</h3>
Resistance is the obstruction of electrons in an electrically conducting material. The mathematical relation for resistance can be understood with the help of the empirical relation provided by Ohm's law.
V=IR
V is the voltage,I is the current and R is the resistance
The vercurrent protective devices are normally installed in a branch circuit from where the conductors receive their supply.
Thus, In a branch circuit, overcurrent safety devices are often located from where the conductors get their supply.
Learn more about resistance from here, refer to the link;
brainly.com/question/14547003
#SPJ4
The Period of the resulting shm will be T=39.7
<u>Explanation:</u>
<u>Given data</u>
m=3kg
d=.06m
k=1200 N/m
Θ=3 °
T=?
we have the formulas,
I = (1/6)Md2
F = ma
F = -kx = -(mω2x)
k = mω2 τ = -d(FgsinΘ)
T=2 x 3.14/ √(m/k)
Solution for the given problem would be,
F=-Kx (where x= dsin Θ)
F=-k dsin Θ
F=-(1200)(.06)sin(3 °)
F=-10.16N
<u>By newton's second law.</u>
F = ma
a= F/m
a=(-10.16N)/3
a=3.38
<u>using the k=mω value</u>
k=mω
ω=k/m
ω=1200/3
ω=400
<u>Using F = -kx value</u>
x = F/-k
x=(-10.16)/1200
x=0.00847m
<u>Restoring the torque value </u>
τ = -dmgsinΘ where( τ = Iα so.).. Iα = -dmgsinΘ α = -(.06)(4)α =
α =(.06)(4)(9.81)sin(4°)
α=-1.781
<u>Rotational to linear form</u>
a = αr
r = .1131 m
a=-1.781 x .1131 m
a=-0.2015233664
<u>Time Period</u>
T=2 x 3.14/ √(m/k)
T=6.28/√(3/1200)
T=6.28/0.158
T=39.7
Answer:

Explanation:
The swimmer can be modelled by the Principle of Energy Conservation. The speed is derived herein:




Explanation:
Distance travelled (d) = 56 metres
Time taken (t) = 7 seconds
velocity of the object (V)
= d / t
= 56 / 7
= 8 m/s
The velocity of the object is 8 m/s.
Hope it will help :)