Answer:
B
Explanation:
D is nonsense. The current keeps coming through all lights.
A is wrong. The exact opposite happens. More bulbs more resistance.
C is wrong. More resistance less current, not more.
So your answer is B because the voltage drop in each decreases when there are more bulbs.
Answer:
P(final) is 2.4 times P(initial).
Explanation:
Here we can assume that the cylinder did not break and it's volume and number of moles of gas present in the cylinder remains constant.
Given the temperature increases by a factor of 2.4. Let us assume that the initial temperature be
and the final temperature be
.
Given that 
Now we know the ideal gas equation is PV=nRT
here V=constant , n=constant , R=gas constant(which is constant).





Force, the unit is Newton, newton is the force to accelerate a mass. so it should be kg m/s^2
joule (J) is equal to Nm not Ns
the unit of work is J and it is correct.
the unit of power is J/s which is equal to W
the unit of of energy is the same with work, which is J which equivalent to kgm2/s2
Answer:
Explanation:
I suppose it has to do with the way the diagram is drawn. The heat does not reflect which makes both A and B incorrect.
C would have nothing to do with either reflection or refraction.
That only leaves D which is the answer.
Answer:
Explanation:
For the first case , the expression for electrostatic force can be given by the following .
F = K x 8Q x 2Q / r² where k is a constant .
F = K 16 Q² / r²
When they touch , some charge is neutralized . Net charge remaining
= 8Q - 2 Q = 6 Q
Charge on each sphere = 6Q/2 = 3 Q .
Force between them
F₁ = k 3Q x 3 Q / r² = k 9 Q² / r²
F₁ / F = 9 / 16
F₁ = 9 F / 16 .