1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
viva [34]
3 years ago
15

Power selection feature for resistors to become water modules 10 liters of water at 25°C to đến

Physics
1 answer:
Mila [183]3 years ago
7 0

Answer:

P = 2439.5 W = 2.439 KW

Explanation:

First, we will find the mass of the water:

Mass = (Density)(Volume)

Mass = m = (1 kg/L)(10 L)

m = 10 kg

Now, we will find the energy required to heat the water between given temperature limits:

E = mCΔT

where,

E = energy = ?

C = specific heat capacity of water = 4182 J/kg.°C

ΔT = change in temperature = 95°C - 25°C = 70°C

Therefore,

E = (10 kg)(4182 J/kg.°C)(70°C)

E = 2.927 x 10⁶ J

Now, the power required will be:

Power = P = \frac{E}{t}

where,

t = time = (20 min)(60 s/1 min) = 1200 s

Therefore,

P = \frac{2.927\ x\ 10^6\ J}{1200\ s}

<u>P = 2439.5 W = 2.439 KW</u>

You might be interested in
Diabetes occurs when there is a large amount of sugar in the blood. Which gland is most likely not functioning well enough in a
elena-14-01-66 [18.8K]
C pancreas! i think it should be
5 0
3 years ago
A spring with a spring constant value of 125 N/m is compressed 12.2 cm by pushing on it with a 215 g block. When the block is re
allsm [11]

Answer:

v = 2.94 m/s

Explanation:

When the spring is compressed, its potential energy is equal to (1/2)kx^2, where k is the spring constant and x is the distance compressed. At this point there is no kinetic energy due to there being no movement, meaning the net energy in the system is (1/2)kx^2.

Once the spring leaves the system, it will be moving at a constant velocity v, if friction is ignored. At this time, its kinetic energy will be (1/2)mv^2. It won't have any spring potential energy, making the net energy (1/2)mv^2.

Because of the conservation of energy, these two values can be set equal to each other, since energy will not be gained or lost while the spring is decompressing. That means

(1/2)kx^2 = (1/2)mv^2

kx^2 = mv^2

v^2 = (kx^2)/m

v = sqrt((kx^2)/m)

v = x * sqrt(k/m)

v = 0.122 * sqrt(125/0.215)        <--- units converted to m and kg

v = 2.94 m/s

3 0
2 years ago
Fill in a T/F answer for each statement below. If false, correct the statement to make it true.:
grandymaker [24]

Answer:

Explanation:

Let's answer these statements

.1) True. This is the law of reflection.

.2) False. The speed of light depends on the index of refraction n = c / v

           v = c / n

.3) True. The frequency creates a forced oscillation, whereby the atoms re-emit at the same incident frequency

.4) False. The index of refraction is a measure of the ratio of the speed of light in a vacuum and the material environment, the ability to change the trajectory is given by the law of refraction

.5) True. True due to the change in beam trajectory due to the law of refraction

.6 False. The phenomenon occurs when you pass from a medium with a higher index to one with a lower ratio, because the refracted beam separates from the normal

.7) True.

.8) False so that the lightning approach is valid Lam >> d,

.9) True.

3 0
3 years ago
A rubber ball is dropped from a height of 8m. After strikingthe floor, the ball bounces to a height of 5m. a. If the ball had bo
kifflom [539]

Answer:

a) This means the collision between the ball and the floor is elastic.

b) This points to a perfectly inelastic collision between the ball and the floor as they stick together after collision

c) Check Explanation.

Explanation:

Collision of bodies are analysed according to whether both momentum and kinetic energy of the system is conserved, that is, if these two quantities before collision are equal to their values after collision.

In all types of collisions, momentum is usually conserved, but kinetic energy is conserved only in an elastic collision.

A ball dropped from a height of 8 m bounces up back to a height of 5 m.

a. If the ball had bounced to a height of 8m, how would you describe the collision between the ball and the floor?

The ball not bouncing back to a height of 8 m shows energy loss at some point in the total motion of the ball (most likely at the collision). If kinetic energy was conserved, the ball would bounce back up to the height at which it fell from (8 m) after the collision with the floor.

b. If the ball had not bounced at all, how would you describe the collision between the ball and the floor?

If the ball had not bounced at all, this means it lost all of its kinetic energy to the floor, and this points to a perfectly inelastic collision between the ball and the floor as they stick together after collision.

c. What happened to the energy lost by the ball during thecollision?

The energy lost during the collision is converted to another form, most likely responsible for some deformation on the ball & a minute deformation on the floor, converted to some form of heat as a result of the collision or into sound energy, usually, it's a combination of all This!

Hope this Helps!!!

5 0
3 years ago
If you pull a resistant puppy with its leash in a horizontal direction, it takes 80 N to get it going. You can then keep it movi
netineya [11]

Answer:

The coefficient of static friction between the puppy and the floor is 0.7273.

Explanation:

The horizontal force applied to move the puppy from a steady state has to be greater than the force of static friction, after it is moving the force needs to be equal to be greater than the force of dynamic friction in order to maintain its movement. The force of static friction is given by:

F_s = \mu_s*N

Where F_s is the static friction force, \mu_s is the coefficient of static friction and N is the normal force. Since there's no angle on the flor the normal force is equal to the weight of the puppy, therefore, N = 110\text{ N}, to make the puppy moving we need to use a force of 80 N, therefore, F_s = 80 \text{ N}, so we can solve for the coefficient as shown below:

80 = \mu_s*110\\\mu_s = \frac{80}{110} = 0.7273\\

The coefficient of static friction between the puppy and the floor is 0.7273.

5 0
3 years ago
Other questions:
  • Assume that a cloud consists of tiny water droplets suspended (uniformly distributed,
    13·1 answer
  • Which of the following is not true of color blindness?
    10·2 answers
  • The primary difference between a scientific theory and a hypothesis is that a theory is: A prediction of an experimental outcome
    7·1 answer
  • Oil having a density of 930 kg/m^3 floats on
    10·1 answer
  • A bicyclist rides 1.86 km due east, while the resistive force from the air has a magnitude of 5.12 N and points due west. The ri
    6·1 answer
  • What type of electromagnetic radiation is used in communications devices such as cellular telephones?
    9·1 answer
  • A 0.500-kg mass suspended from a spring oscillates with a period of 1.50 s. How much mass must be added to the object to change
    10·1 answer
  • a block of wood with a mass of 2.33 kg is at rest on a frictionless pole. A .011 kg bullet is fired 722 m/s and is embedded with
    12·1 answer
  • The initial momentum of a system is measured at 300 kg•m/s. Afterwards, the
    10·1 answer
  • What are the characteristics of the bowling ball that give it lots of momentum?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!