Answer:

Explanation:
<u>Motion with Constant Acceleration</u>
A body moves with constant acceleration when the speed changes uniformly in time. The equation used to find the final speed vf is

Where vo is the initial speed, a is the acceleration, and t is the time.
The cyclist has an initial speed of vo=10 miles/hour and ends up at vf=20 miles/hour in t=5 seconds.
Both speeds are given in miles/hour and we must convert it to m/s:
1 mile/hour = 0.44704 m/s
10 mile/hour = 4.47 m/s
20 mile/hour = 8.94 m/s
The acceleration is calculated by solving for a:



Answer:
FALSE
Explanation:
The answer is false.
The speed of the sound in water is faster when compared to the speed of sound in air. This is because, the particles in air is loosely packed and are far from each other as compared to water or liquid.
The water particles are close to each other than air particles, so water particles are able to transmit the vibrations of the sound faster than the air particles.
Therefore sound waves travels faster in water than in air.
Answer:
4.9 m/s²
Explanation:
Draw a free body diagram. There are two forces on the object:
Weight force mg pulling straight down,
and normal force N pushing perpendicular to the plane.
Sum the forces in the parallel direction.
∑F = ma
mg sin θ = ma
a = g sin θ
a = (9.8 m/s²) (sin 30°)
a = 4.9 m/s²
Answer:
The heat loss per unit length is 
Explanation:
From the question we are told that
The outer diameter of the pipe is 
The thickness is
The temperature of water is
The outside air temperature is 
The water side heat transfer coefficient is 
The heat transfer coefficient is 
The heat lost per unit length is mathematically represented as
![\frac{Q}{L} = \frac{2 \pi (T - Ta)}{ \frac{ln [\frac{d}{D} ]}{z_1} + \frac{ln [\frac{d}{D} ]}{z_2}}](https://tex.z-dn.net/?f=%5Cfrac%7BQ%7D%7BL%7D%20%20%20%3D%20%5Cfrac%7B2%20%5Cpi%20%28T%20-%20Ta%29%7D%7B%20%5Cfrac%7Bln%20%5B%5Cfrac%7Bd%7D%7BD%7D%20%5D%7D%7Bz_1%7D%20%20%2B%20%20%5Cfrac%7Bln%20%5B%5Cfrac%7Bd%7D%7BD%7D%20%5D%7D%7Bz_2%7D%7D)
Substituting values
![\frac{Q}{L} = \frac{2 * 3.142 (363 - 263)}{ \frac{ln [\frac{0.104}{0.002} ]}{300} + \frac{ln [\frac{0.104}{0.002} ]}{20}}](https://tex.z-dn.net/?f=%5Cfrac%7BQ%7D%7BL%7D%20%20%20%3D%20%5Cfrac%7B2%20%2A%203.142%20%28363%20-%20263%29%7D%7B%20%5Cfrac%7Bln%20%5B%5Cfrac%7B0.104%7D%7B0.002%7D%20%5D%7D%7B300%7D%20%20%2B%20%20%5Cfrac%7Bln%20%5B%5Cfrac%7B0.104%7D%7B0.002%7D%20%5D%7D%7B20%7D%7D)


Answer:
Total distance travelled = 210m
Explanation:
Distance travelled = 80m + 50m + 10m + 70m
= 210m