Answer:
The water lost is 36% of the total mass of the hydrate
Explanation:
<u>Step 1:</u> Data given
Molar mass of CuSO4*5H2O = 250 g/mol
Molar mass of CuSO4 = 160 g/mol
<u>Step 2:</u> Calculate mass of water lost
Mass of water lost = 250 - 160 = 90 grams
<u>Step 3:</u> Calculate % water
% water = (mass water / total mass of hydrate)*100 %
% water = (90 grams / 250 grams )*100% = 36 %
We can control this by the following equation
The hydrate has 5 moles of H2O
5*18. = 90 grams
(90/250)*100% = 36%
(160/250)*100% = 64 %
The water lost is 36% of the total mass of the hydrate
Answer:
Both compounds are colorless, so a mixture of them will look transparent. Both molecules are nopolar, therefore they will associate with each other through London interactions, also known as Van del Waals forces or as transient dipole-transient dipole interactions.
Explanation:
T=20 min
m₀=200 g
t=60 min
the mass of element through time t is:
m=m₀*2^(-t/T)
m=200*2^(-60/20)=25 g
25 grams of element will be left after 60 minutes
Elements which appear in the same column have similar properties (periodicity). For example, all of the elements in group XVII (17), the Halogens, all react in a similar fashion; they all like to attract one additional electron and form a -1 anion.