Answer:
The work and heat transfer for this process is = 270.588 kJ
Explanation:
Take properties of air from an ideal gas table. R = 0.287 kJ/kg-k
The Pressure-Volume relation is <em>PV</em> = <em>C</em>
<em>T = C </em> for isothermal process
Calculating for the work done in isothermal process
<em>W</em> = <em>P</em>₁<em>V</em>₁ ![ln[\frac{P_{1} }{P_{2} }]](https://tex.z-dn.net/?f=ln%5B%5Cfrac%7BP_%7B1%7D%20%7D%7BP_%7B2%7D%20%7D%5D)
= <em>mRT</em>₁
[∵<em>pV</em> = <em>mRT</em>]
= (5) (0.287) (272.039) ![ln[\frac{2.0}{1.0}]](https://tex.z-dn.net/?f=ln%5B%5Cfrac%7B2.0%7D%7B1.0%7D%5D)
= 270.588 kJ
Since the process is isothermal, Internal energy change is zero
Δ<em>U</em> = 
From 1st law of thermodynamics
Q = Δ<em>U </em>+ <em>W</em>
= 0 + 270.588
= 270.588 kJ
Even tho one is stronger then the other... they are both alike because they are still nuclear forces.
Answer:
The answer is a," their receptors are sensitive to chemical molecules."
Answer:
<em>a. Angle= 28.82°</em>
<em>b. Approved. He will get cold but he should be able to make it across</em>
Explanation:
Velocity Vector
The velocity is a physical quantity that measures how fast or slow at a particular direction some object is moving. It must be expressed as a vector with both a magnitude and direction. If the object is confined to move in one direction, then we can use the speed as the scalar (magnitude only) equivalent of the velocity.
a.
The explorer wants to swim across a river to his campsite, as shown in the image below. The river has a velocity vr and the explorer can swim at ve in still water. If he swam directly to the campsite, he would end up in a point below it because the river would push him down. He must swim with a velocity such that he overcomes the stream but he advances to its objective. Let's call the angle he must swim at respect to the shoreline to achieve his goal. The explorer's velocity can be decomposed in its rectangular components vx and vy. To overcome the river's velocity:

We can compute the vertical component of the explorer's velocity as

Thus

Solving for 


Then we have the angle is

b.
The horizontal component of the explorer's velocity is


This is the real velocity the explorer is having directly to the campsite
Knowing that

Solving for t

Calculating the time it takes the explorer to cross the river


Since this value is less than the limit value of hypothermia (300 sec), the decision is
Approved. He will get cold but he should be able to make it across