Answer:
the acceleration is reduced by gravity
a = (15 / .35) - [9.8 * sin(65º)]
Explanation:
break the launch vector into two components, vertical and horizontal
Force Net Vertical=-9.8*.350+15cos65 N
force net horizonal=15sin65
initial acceleration= force/mass= (-9.8+15/.350*cos65)j+(15/.350*sin65)i
using i,j vectors..
Answer:
<h2>E. 3.95kW</h2>
Explanation:
Power is defined as the rate of workdone.
Power = Workdone/time taken
Given Workdone = Force * distance
Power = Force * distance/time taken
Power = mgd/t (F = mg)
m = mass of the sand in kg
g = acceleration due to gravity in m/s²
d = vertical distance covered in metres
t = time taken in seconds
Given m = 2000kg, d = 12m, t = 1min = 60secs, g = 9.8m/s²
Power = 2000*9.8*12/60
Power = 3920Watts
Minimum rate of power that must be supplied to this machine is 3920Watts or 3.92kW
Answer:
There is a localization of negative charge near the door handle.
Answer:
(a). The work done is 7001 MeV.
(b). The momentum of this proton is
.
Explanation:
Given that,
Speed = 0.993 c
We need to calculate the work done
Using work energy theorem
The work done is equal to the kinetic energy relative to the proton


Put the value into the formula




(b). We need to calculate the momentum of this proton
Using formula of momentum

Put the value into the formula




Hence, (a). The work done is 7001 MeV.
(b). The momentum of this proton is
.
Answer:
The mass is 
Explanation:
From the question we are told that
The extension of the rod is 
The area is 
The density increase as follows 
The equation 
at

So

=> 
So at
, 
So

=> 
Now

![m = 8 [{2.5 +\frac{ 1.27x^2}{2} } ]\left | 13} \atop {0}} \right.](https://tex.z-dn.net/?f=m%20%20%3D%20%208%20%20%20%5B%7B2.5%20%2B%5Cfrac%7B%201.27x%5E2%7D%7B2%7D%20%7D%20%5D%5Cleft%20%20%7C%2013%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
![m = 8 [{2.5 +\frac{ 1.27(13)^2}{2} } ]](https://tex.z-dn.net/?f=m%20%20%3D%20%208%20%20%20%5B%7B2.5%20%2B%5Cfrac%7B%201.27%2813%29%5E2%7D%7B2%7D%20%7D%20%5D)

