Answer: a) 6.67cm/s b) 1/2
Explanation:
According to law of conservation of momentum, the momentum of the bodies before collision is equal to the momentum of the bodies after collision. Since the second body was initially at rest this means the initial velocity of the body is "zero".
Let m1 and m2 be the masses of the bodies
u1 and u2 be their velocities respectively
m1 = 5.0g m2 = 10.0g u1 = 20.0cm/s u2 = 0cm/s
Since momentum = mass × velocity
The conservation of momentum of the body will be
m1u1 + m2u2 = (m1+m2)v
Note that the body will move with a common velocity (v) after collision which will serve as the velocity of each object after collision.
5(20) + 10(0) = (5+10)v
100 + 0 = 15v
v = 100/15
v = 6.67cm/s
Therefore the velocity of each object after the collision is 6.67cm/s
b) kinectic energy of the 10.0g object will be 1/2MV²
= 1/2×10×6.67²
= 222.44Joules
kinectic energy of the 5.0g object will be 1/2MV²
= 1/2×5×6.67²
= 222.44Joules
= 111.22Joules
Fraction of the initial kinetic transferred to the 10g object will be
111.22/222.44
= 1/2
Let the angle be Θ (theta)
Let the mass of the crate be m.
a) When the crate just begins to slip. At that moment the net force will be equal to zero and the static friction will be at the maximum vale.
Normal force (N) = mg CosΘ
μ (coefficient of static friction) = 0.29
Static friction = μN = μmg CosΘ
Now, along the ramp, the equation of net force will be:
mg SinΘ - μmg CosΘ = 0
mg SinΘ = μmg CosΘ
tan Θ = μ
tan Θ = 0.29
Θ = 16.17°
b) Let the acceleration be a.
Coefficient of kinetic friction = μ = 0.26
Now, the equation of net force will be:
mg sinΘ - μ mg CosΘ = ma
a = g SinΘ - μg CosΘ
Plugging the values
a = 9.8 × 0.278 - 0.26 × 9.8 × 0.96
a = 2.7244 - 2.44608
a = 0.278 m/s^2
Hence, the acceleration is 0.278 m/s^2
<span>diminution in the density of something, especially air or a gas.</span>
It 45 because it has to be this and that and ur gay