A well-defined model will tell you what represents the number of weeks of growth. Here, we have to assume that ...
x represents the number of weeks of growth.
<u>T</u><u>h</u><u>e</u><u> </u><u>s</u><u>t</u><u>a</u><u>t</u><u>e</u><u>m</u><u>e</u><u>n</u><u>t</u><u>s</u><u> </u><u>t</u><u>r</u><u>u</u><u>e</u><u> </u><u>f</u><u>o</u><u>r</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>g</u><u>i</u><u>v</u><u>e</u><u>n</u><u> </u><u>f</u><u>u</u><u>n</u><u>c</u><u>t</u><u>i</u><u>o</u><u>n</u><u> </u><u>a</u><u>r</u><u>e</u><u>:</u>
I tried them all and these two were correct, their solutions are as follows:
= f(x) = 1/2x + 3/2
= f(0) = 1/2 × 0 + 3/2
= f(0) = 0 + 3/2
= f(0) = 3/2
= f(x) = 1/2x + 3/2
= f(4) = 1/2 × 4 + 3/2
= f(4) = 2 + 3/2
= f(4) = 4+3/2
= f(4) = 7/2
So, that's how these two are correct.
Answer: My best answer would be independent
Step-by-step explanation: because you would be the one rolling the dice but you don't know what it would be landing on
F(x) = (x + 1)(x - 2)
f(x) = x(x - 2) + 1(x - 2)
f(x) = x(x) - x(2) + 1(x) - 1(2)
f(x) = x² - 2x + x - 2
f(x) = x² - x - 2