Answer:
The rate of disappearance of C₂H₆O = 2.46 mol/min
Explanation:
The equation of the reaction is given below:
2 K₂Cr₂O₇ + 8 H₂SO₄ + 3 C₂H₆O → 2 Cr₂(SO₄)₃ + 2 K₂SO₄ + 11 H₂O
From the equation of the reaction, 3 moles of C₂H₆O is used when 2 moles of Cr₂(SO₄)₃ are produced, therefore, the mole ratio of C₂H₆O to Cr₂(SO₄)₃ is 3:2.
The rate of appearance of Cr₂(SO₄)₃ in that particular moment is given 1.64 mol/min. This would than means that C₂H₆O must be used up at a rate which is approximately equal to their mole ratios. Thus, the rate of of the disappearance of C₂H₆O can be calculated from the mole ratio of Cr₂(SO₄)₃ and C₂H₆O.
Rate of disappearance of C₂H₆O = 1.64 mol/min of Cr₂(SO₄)₃ * 3 moles of C₂H₆O / 2 moles of Cr₂(SO₄)₃
Rate of disappearance of C₂H₆O = 2.46 mol/min of C₂H₆O
Therefore, the rate of disappearance of C₂H₆O = 2.46 mol/min
I have no formula however the process would be erosion... copper is a type of metal and when it rots from water or any type of liquid damage it erodes and gets that green coat.
<u>Answer;</u>
= 0.422 M
<h3><u>Explanation;</u></h3>
Molarity or concentration is the number of moles of a solute in 1 liter of a solution.
Therefore; Molarity = n/V ; where n is the number of moles and V is the volume of the solution in L.
Number of moles = Mass/molar mass
= 289 g/342.2965g/mol
= 0.844 Moles
Therefore;
Molarity = 0.844 moles/ 2L
= 0.422 M
Monkey is good and that is all their it to it