Yes. density is a physical property that can be used to identify matter
<span>Scientific endeavors is basically all the things that would contribute to the process of achieving a certain scientific knowledge, from the initial observation, up to the point until we can hold that certain thing as acknowledged truth. So,
All scientific endeavors are supported by evidence.
All scientific endeavors are a systemic process.
All scientific endeavors involve observation.
All scientific endeavors involve experimentation.
All scientific endeavors involve the collection of information.
</span>
Balancing of chemical equation is essential because of the law of conservation of mass, which states that the mass of a system can not be created or removed.
The second equation is balanced
This is because the number of elements of each atom in the product side equal the number of elements of each atom on the reactant side.
The first equation is not balanced

This is because there is 1 molecule of
on reactant side as compared to 3 molecules of 
To balance the equation we add a coefficient of 3 on sulphuric acid (
) and a coefficient of 3 on hydrogen (
)

I think the answer is False.

Here the base is a benzoate ion, which is a weak base and reacts with water.

The equation indicates that for every mole of OH- that is produced , there is one mole of C6H5COOH produced.
Therefore [OH-] = [C6H5COOH]
In the question value of PH is given and by using pH we can calculate pOH and then using pOH we can calculate [OH-]
pOH = 14 - pH
pH given = 9.04
pOH = 14-9.04 = 4.96
pOH = -log[OH-] or ![[OH^{-}] = 10^{^{-pOH}}](https://tex.z-dn.net/?f=%20%5BOH%5E%7B-%7D%5D%20%3D%2010%5E%7B%5E%7B-pOH%7D%7D%20)
![[OH^{-}] = 10^{^{-4.96}}](https://tex.z-dn.net/?f=%20%5BOH%5E%7B-%7D%5D%20%3D%2010%5E%7B%5E%7B-4.96%7D%7D%20)
![[OH^{-}] = 1.1\times 10^{-5}](https://tex.z-dn.net/?f=%20%5BOH%5E%7B-%7D%5D%20%3D%201.1%5Ctimes%2010%5E%7B-5%7D%20)
The base dissociation equation kb = 
![kb =\frac{[C6H5COOH][OH^{-}]}{[C6H5COO^{-}]}](https://tex.z-dn.net/?f=%20kb%20%3D%5Cfrac%7B%5BC6H5COOH%5D%5BOH%5E%7B-%7D%5D%7D%7B%5BC6H5COO%5E%7B-%7D%5D%7D)
H2O(l) is not included in the 'kb' equation because 'solid' and 'liquid' are taken as unity that is 1.
Value of Kb is given = 
And value of [OH-] we have calculated as
and value of C6H5COOH is equal to OH-
Now putting the values in the 'kb' equation we can find the concentration of C6H5COO-
![kb =\frac{[C6H5COOH][OH^{-}]}{[C6H5COO^{-}]}](https://tex.z-dn.net/?f=%20kb%20%3D%5Cfrac%7B%5BC6H5COOH%5D%5BOH%5E%7B-%7D%5D%7D%7B%5BC6H5COO%5E%7B-%7D%5D%7D)
![1.6\times 10^{-10} = \frac{[1.1\times 10^{-5}][1.1\times 10^{-5}]}{[C6H5COO^{-}]}](https://tex.z-dn.net/?f=%201.6%5Ctimes%2010%5E%7B-10%7D%20%3D%20%5Cfrac%7B%5B1.1%5Ctimes%2010%5E%7B-5%7D%5D%5B1.1%5Ctimes%2010%5E%7B-5%7D%5D%7D%7B%5BC6H5COO%5E%7B-%7D%5D%7D%20)
![[C6H5COO^{-}] = \frac{[1.1\times 10^{-5}][1.1\times 10^{-5}]}{1.6\times 10^{-10}}](https://tex.z-dn.net/?f=%20%5BC6H5COO%5E%7B-%7D%5D%20%3D%20%5Cfrac%7B%5B1.1%5Ctimes%2010%5E%7B-5%7D%5D%5B1.1%5Ctimes%2010%5E%7B-5%7D%5D%7D%7B1.6%5Ctimes%2010%5E%7B-10%7D%7D%20)
or 
So, Concentration of NaC6H5COO would also be 0.76 M and volume is given to us 0.50 L , now moles can we calculated as : Moles = M X L
Moles of NaC6H5COO would be = 
Moles of NaC6H5COO (sodium benzoate) = 0.38 mol