Answer:
IV
Explanation:
The complete question is shown in the image attached.
Let us call to mind the fact that the SN1 mechanism involves the formation of carbocation in the rate determining step. The order of stability of cabocations is; tertiary > secondary > primary > methyl.
Hence, a tertiary alkyl halide is more likely to undergo nucleophilic substitution reaction by SN1 mechanism since it forms a more stable cabocation in the rate determining step.
Structure IV is a tertiary alkyl halide, hence it is more likely to undergo nucleophilic substitution reaction by SN1 mechanism.
<h3>
Answer:</h3>
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
- Analyzing Reactions RxN
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2C + O₂ → 2CO₂
[Given] 0.25 moles O₂
[Solve] moles CO₂
<u>Step 2: Identify Conversions</u>
[RxN] 1 mol O₂ → 2 mol CO₂
<u>Step 3: Stoichiometry</u>
- [DA] Set up:
- [DA] Multiply/Divide [Cancel out units]:
The answer is d. hope it helps
Answer:
no of neutron = atomic mass - atomic number
Explanation:
here
atomic mass = 64
atomic number = 30
no of neutron = <span>64−30</span>
no of neutron = 34