The attribute of any rotating object determined by the product of the moment of inertia and the angular velocity is known as angular momentum.
<h3>What is Angular Momentum?</h3>
- Without a kickstand, attempting to balance while getting on a bicycle will definitely result in you falling off. However, these wheels gain angular momentum once you begin pedaling. They're going to be resistant to change, which will make balance simpler.
- The definition of angular momentum is: any rotating object's characteristic determined by moment of inertia times angular velocity.
- It is a characteristic of rotating bodies determined by the sum of their moment of inertia and angular velocity. Since it is a vector quantity, the direction must also be taken into account in addition to the magnitude.
- Angular Momentum Examples : We encounter this property frequently, whether knowingly or unknowingly.
- The following provides some examples : Ice-skater
- In order to begin a spin, an ice skater starts with her hands and legs spread widely from the center of her body. She moves her hands and leg closer to her body when she needs to spin with more angular velocity, though.
- As a result, she conserves angular momentum and spins faster.
To Learn more About angular momentum refer to :
brainly.com/question/26889176
#SPJ4
By definition, acceleration is the change in velocity per change of time. As time passes by, the time increases in value. So, when the acceleration is decreasing while the time is increasing, then that means that the change of velocity is also decreasing with time. So, optimally, the initial velocity and the velocity at any time are very relatively close to each other,
Explanation:
Its D. The warm air from the land moves towards the water
The formula for the period of wave is: wave period is equals to 1 over the frequency.

To get the value of period of wave you need to divide 1 by 200 Hz. However, beforehand, you have to convert 200 Hz to cycles per second. So that would be, 200 cyles per second or 200/s.
By then, you can start the computation by dividing 1 by 200/s. Since 200/s is in fractional form, you have to find its reciprocal form and multiply it to one which would give you 1 (one) second over 200. This would then lead us to the value
0.005 seconds as the wave period.
wave period= 1/200 Hz
Convert Hz to cycles per second first
200 Hz x 1/s= 200/second
Make 200/second as your divisor, so:
wave period= 1/ 200/s
get the reciprocal form of 200/s which is s/200
then you can start the actual computation:
wave period= 1 x s divided by 200
this would give us an answer of
0.005 s.
Answer:
11760 joules
Explanation:
Given
Mass (m) = 75kg
Height (h) = 16m
Required
Determine the increment in potential energy (PE)
This is calculated as thus:
PE = mgh
Where g = 9.8m/s²
Substitute values for m, g and h.
P.E = 75 * 9.8 * 16
P.E = 11760 joules