Responder:
<h2>
0.7Hertz
</h2>
Explicación:
Usando la fórmula para calcular la velocidad de onda que se expresa como se muestra.
Velocidad de una onda = frecuencia * longitud de onda
v = fλ
Dada la velocidad de onda = 14 m / sy longitud de onda = 20 metros
frecuencia f = v / λ
f = 14/20
f = 0.7Hertz
La frecuencia de la onda es de 0.7 Hertz.
If<span> The </span>Sun<span> Went Out, How Long </span>Could<span> Life On </span>Earth<span> Survive? ... (which is actually physically impossible), the </span>Earth would stay<span> warm—at least ... from the planet's core </span>would<span> equal the</span>heat<span> that the </span>Earth<span> radiates into space, ... Photosynthesis </span>would<span> halt immediately, and </span>most<span> plants</span>would<span> die </span>in<span> a few </span>weeks<span>.</span>
It is number 3. Because microwaves are the lowest of the sepectum then visible light the the highest of them all is Gamma Ray's. Hope this helps!!
Answer:
a. 2v₀/a b. 2v₀/a
Explanation:
a. Since you are moving with a constant velocity v₀, the distance, s you cover in time = t max is s = v₀t.
Since the dragster starts from rest with an acceleration, a, using
s' = ut + 1/2at² where u = 0 and s' = distance moved by dragster
s' = 0t + 1/2at²
s' = 1/2at²
Since the distance moved by me and the dragster must be the same,
s = s'
v₀t. = 1/2at²
v₀t. - 1/2at² = 0
t(v₀ - 1/2at) = 0
t= 0 or v₀ - 1/2at = 0
t= 0 or v₀ = 1/2at
t= 0 or t = 2v₀/a
So the maximum time tmax = 2v₀/a
b. Since the distance covered by me to meet the dragster is s = v₀t in time, t = tmax which is also my distance from the dragster when it started. So, my distance from the dragster when it started is s = v₀(2v₀/a)
= 2v₀/a
Answer:
In two significant figure 360K
Explanation:
The temperature difference (ΔT) can be calculated as the boiling temperature minus the freezing temperature in Fahrenheit.
Hence,
ΔT = 212 - 32
ΔT = 180°F
To convert to °F to kelvin, we use the formula below
= (°F - 32) × 5/9 + 273.15
= (180°F - 32) × 5/9 + 273.15
= 355.37K ⇔ 360K