Answer:
7.6 g
Explanation:
"Well lagged" means insulated, so there's no heat transfer between the calorimeter and the surroundings.
The heat gained by the copper, water, and ice = the heat lost by the steam
Heat gained by the copper:
q = mCΔT
q = (120 g) (0.40 J/g/K) (40°C − 0°C)
q = 1920 J
Heat gained by the water:
q = mCΔT
q = (70 g) (4.2 J/g/K) (40°C − 0°C)
q = 11760 J
Heat gained by the ice:
q = mL + mCΔT
q = (10 g) (320 J/g) + (10 g) (4.2 J/g/K) (40°C − 0°C)
q = 4880 J
Heat lost by the steam:
q = mL + mCΔT
q = m (2200 J/g) + m (4.2 J/g/K) (100°C − 40°C)
q = 2452 J/g m
Plugging the values into the equation:
1920 J + 11760 J + 4880 J = 2452 J/g m
18560 J = 2452 J/g m
m = 7.6 g
Heat can be transferred from one place to another by three methods:
conduction in solids,
convection of fluids (liquids or gases),
radiation through anything that will allow radiation to pass.
Answer: columbs
Explanation:
Electrical charge are measured in columbs, usually demoted as C. Hence, the charges on proton and electron will be measured in Coloumbs. It typically measures the amount of electricity conveyed per second by a current of 1 ampere. The other units Given such as ; Volt is used for measuring voltage, which is the pressure in an electrical source. AMPERE is used for measuring the current flowing through an electrical circuit.
Dalton is a unit of mass and is about 1.660 * 10^-27 kg
A-200 kg
I hope this helped xx