Answer:
Explanation:
8.73 mol x mol
2 C57H110O6(S) + 163 O2(g) ---> 114 CO2(g) + 110 H2O(I)
2 mol 114 mol
8.78 mol (114mol/2 mol) =500.46 mol
O is a blood donor
AB receiver
First M stands for Molarity which is (moles of solute) / (Liters of solution). we also know that moles = (mass) / (molar mass). so we can form some equations here. We know:
Molarity (M) = moles (mol) / Liters (L)
moles (mol) = (mass) / (molar mass)
we can substitute the (mass) / (molar mass) for (moles) and get:
M = [(mass) / (molar mass)] / Liters
we can now isolate mass and get
M * Liters * molar mass = mass
now we need to find the molar mass of CaCl2 which is 110.98 g/mol
plug the values in and get
.350M * 6.5L * 110.98 g/mol = mass
mass = 252.4795g however the 6.5L has only 2 sig figs so i would say
mass CaCl2 = 2.5 * 10 ^2 g
Answer:
D. 1.48atm
Explanation:
Van der waals equation is given as:
(P +an²/v²) (v - nb) = nRT
Where;
P = pressure (atm)
V = volume (L)
R = gas constant (0.0821 Latm/molK)
a and b = gas constant specific to each gas
T = temperature (K)
n = number of moles
According to the given information; V = 22.4L, T = 0.00°C (273.15K), R = 0.0821 Latm/molK, a = 6.49L^2-atm/mol^2, b = 0.0562 L/mol, n = 1.5mol
Hence;
(P + 6.49 × 1.5²/22.4²) (22.4 - 1.5×0.0562) = 1.5 × 0.0821 × 273.15
(P + 6.49 × 2.25/501.76) (22.4 - 0.0843) = 33.638
(P + 0.0291) (22.316) = 33.638
22.316P + 0.649 = 33.638
22.316P = 33.638 - 0.649
22.316P = 32.989
P = 32.989/22.316
P = 1.478
P = 1.48atm