The water molecules will flow from b to a due to osmosis.
Osmosis is where water molecules will flow from a region of higher water potential to a region of lower water potential, through a selectively permeable membrane.
When the water molecule concentration is higher, it has a higher water potential top. Water potential is the tendency for them to flow to a lower region.
The net movement will stop until both sides of the solution has a same water potential.
Answer:
You are the Cobalt
Explanation:
The least massive metalloid in the fourth period is Germanium, and it have 32 protons. If you have 5 less protons: 32 - 5 = 27 protons. The element with 27 protons is Cobalt
It is important to use low flame when evaporating water from a recovered filtrate because then the water and filtrate will not spatter and the filtrate can also be recovered after evaporating water.
If flame is not low then water as well as got spatter so it is important to use low flame so that the water and filtrate will not spatter.
Answer:
Explanation:
Given parameters:
Molarity of KOH = 0.26M
Volume of H₂SO₄ = 19.76mL
Molarity of H₂SO₄ = 0.20M
Unknown:
Volume of KOH = ?
Solution:
This is a neutralization reaction in which an acid reacts with a base to produce salt and water:
H₂SO₄ + 2KOH → K₂SO₄ + 2H₂O
We solve from the known to the unknown in the reaction.
The known is the acid and from there we can find the number of moles of the acid to be completely neutralized:
Number of moles of acid = molarity x volume
Number of moles of acid = 19.76 x 0.20 = 3.95mol
From the balanced reaction equation:
1 mole of acid reacts with 2 moles of the bases KOH
3.95mole of acid would react with 3.95moles x 2 of the base
Number of moles of reacting base = 7.90moles
To find the volume of base;
Volume of base = 
Volume =
= 30.40mL
Learn more:
Neutralization brainly.com/question/6447527
#learnwithBrainly
Answer:
Ability to be bent = Malleability
Identity = Physical Change
Electrical Current = Conductivity
Dissolve = Solubility
Color, Phase, or Hardness = Physical Property