Answer:
No, I can not identify the contents of each bottle using solubility and polarity (with H2O) information
Explanation:
While it is true that polar substances dissolve in water and nonpolar substances do not dissolve in water, the task here is to specifically identify the contents of each of the bottles.
Solubility in water can not tell us exactly what liquid is which substance. For instance, trans-1,2-dichloroethylene, cis-1,2-dichloroethylene and cyclooctane are all insoluble in water. The fact that they do not dissolve in water does not tell us which liquid is which compound.
Even though acetic acid is miscible with water, it is not a conclusive prove that the liquid is acetic acid since other polar organic compounds are also miscible in water.
It is only by determining the boiling point of each substance that I can conclusively identify the contents of each bottle since boiling point is an intrinsic property of substances.
Answer:
Option D. 53 moles.
Explanation:
The following data were obtained from the question:
Number of mole of C5H10O2 = 5.3 moles
Number of mole of Hydrogen in 5.3 moles of C5H10O2 =?
From the chemical formula of propyl acetate, C5H10O2,
1 mole of C5H10O2 contains 10 moles of H.
Therefore, 5.3 moles of C5H10O2 will contain = 5.3 × 10 = 53 moles of H.
Thus, 5.3 moles of C5H10O2 contains 53 moles of H.
Answer:
Explanation:
Hello!
In this case, since the energy involved during a heating process is shown below:
Whereas the specific heat of water is 4.184 J/(g°C), we can compute the heated mass of water by the addition of 11.9 kJ (11900 J) of heat as shown below:
Thus, by plugging in, we obtain:
Best regards!