It’s Benzene, I do believe :) hope this helped, good luck!
Answer:
A) When the moon is full
Explanation:
The moon controls the tides, so the more the moon the more the tide
Answer:
The energy of a vibrating molecule is quantized much like the energy of an electron in the hydrogen atom. The energy levels of a vibrating molecule are given by the equation: En=(n+21)hv where n is a quantum number with possible values of 1, 2, ... and v is the frequency of vibration.
Explanation:
hope it helps.
have a wonderful day!
Answer:
2.25×10¯³ mm.
Explanation:
From the question given above, we obtained the following information:
Diameter in micrometer = 2.25 μm
Diameter in millimetre (mm) =?
Next we shall convert 2.25 μm to metre (m). This can be obtained as follow:
1 μm = 1×10¯⁶ m
Therefore,
2.25 μm = 2.25 μm / 1 μm × 1×10¯⁶ m
2.25 μm = 2.25×10¯⁶ m
Finally, we shall convert 2.25×10¯⁶ m to millimetre (mm) as follow:
1 m = 1000 mm
Therefore,
2.25×10¯⁶ m = 2.25×10¯⁶ m /1 m × 1000 mm
2.25×10¯⁶ m = 2.25×10¯³ mm
Therefore, 2.25 μm is equivalent to 2.25×10¯³ mm.
Answer: <span>The molecules of a substance which must have the
<u>a</u></span>
<u>bility to move past one another</u> are said to be flexible.
Explanation: Those substances are said to be flexible which can be
bent without breaking. There are many substances which are
hard in nature but still can be bent. The hardness of such materials is due to
strong interactions between the molecules and the flexibility comes due to their
amorphous backbone. Therefore, greater the
crystalline level of macromolecules lesser is the flexibility and greater the amorphous character greater is the flexibility and vice versa. Also, the flexibility of polymers is increased by adding
plastisizers in it. Plastisizers make the hard polymers flexible by breaking the crosslinkers and enabling the macromolecules to move past one another.