The mass of oxygen collected from the thermal decomposition of potassium chlorate at a temperature of 297 K and 762 mmHg is 0.16 g
<h3>How to determine the mole of oxygen produced </h3>
We'll begin by obtaining the number of mole of oxygen gas produced from the reaction. This can be obtained by using the ideal gas equation as illustrated below:
- Volume (V) = 0.128 L
- Temperature (T) = 297 K
- Pressure (P) = 762 – 22.4 = 739.6 mmHg
- Gas constant (R) = 62.363 mmHg.L/Kmol
- Number of mole (n) =?
PV = nRT
739.6 × 0.128 = n × 62.363 × 297
Divide both sides by 62.363 × 297
n = (739.6 × 0.128) / (62.363 × 297)
n = 0.0051 mole
Thus, the number of mole of oxygen gas produced is 0.0051 mole
<h3>How to determine the mass of oxygen collected</h3>
Haven obtain the number of mole of oxygen gas produced, we can determine the mass of the oxygen produced as follow:'
- Mole = 0.0051 mole
- Molar mass of oxygen gas = 32 g/mole
- Mass of oxygen =?
Mole = mass / molar mass
0.0051 = mass of oxygen / 32
Cross multiply
Mass of oxygen = 0.0051 × 32
Mass of oxygen = 0.16 g
Thus, we can conclude that the mass of oxygen gas collected is 0.16 g
Learn more about ideal gas equation:
brainly.com/question/4147359
#SPJ1
Answer:
A: element B
B: element A
C: element B
D: element A
Explanation:
decrease in size leads increase in electronegativity because the smaller the size, the closer the shell is to the nucleus. Also, atomic radius decreases to the right and up on the periodic table. Atomic radius increases to the left and down a period. I hope this helps!
Answer:
To calculate an electron configuration, divide the periodic table into sections to represent the atomic orbitals, the regions where electrons are contained. Groups one and two are the s-block, three through 12 represent the d-block, 13 to 18 are the p-block and the two rows at the bottom are the f-block.Explanation:
Answer:
heat flow
Explanation:
heat flow moves to a higher temperature to a lower temperature