Answer:
9.1
Explanation:
Step 1: Calculate the basic dissociation constant of propionate ion (Kb)
Sodium propionate is a strong electrolyte that dissociates according to the following equation.
NaC₃H₅O₂ ⇒ Na⁺ + C₃H₅O₂⁻
Propionate is the conjugate base of propionic acid according to the following equation.
C₃H₅O₂⁻ + H₂O ⇄ HC₃H₅O₂ + OH⁻
We can calculate Kb for propionate using the following expression.
Ka × Kb = Kw
Kb = Kw/Ka = 1.0 × 10⁻¹⁴/1.3 × 10⁻⁵ = 7.7 × 10⁻¹⁰
Step 2: Calculate the concentration of OH⁻
The concentration of the base (Cb) is 0.24 M. We can calculate [OH⁻] using the following expression.
[OH⁻] = √(Kb × Cb) = √(7.7 × 10⁻¹⁰ × 0.24) = 1.4 × 10⁻⁵ M
Step 3: Calculate the concentration of H⁺
We will use the following expression.
Kw = [H⁺] × [OH⁻]
[H⁺] = Kw/[OH⁻] = 1.0 × 10⁻¹⁴/1.4 × 10⁻⁵ = 7.1 × 10⁻¹⁰ M
Step 4: Calculate the pH of the solution
We will use the definition of pH.
pH = -log [H⁺] = -log 7.1 × 10⁻¹⁰ = 9.1
When you are asked a question like this, you can always ask yourself this question. Can I change it back after this change? For example, if you are burning wood, you cannot bring it back to wood after you burn it, therefore, it is a chemical change. However, if you boil and evaporate water, you can make the water condense again back into its liquid form. In this case, you cannot bring the tomato back to its raw state. Therefore, cooking raw tomatoes is a chemical change.
Covalent bond a chemical bond formed by two electrons that are shared between two atoms
ionic bond<span> a chemical bond formed by the electrostatic attraction between ions</span>
metallic bond<span> a bond characteristic of metals in which mobile valence electrons are shared among positive nuclei in the metallic crystal</span>