To know the density you also need to know the volume of the rock.
Answer:
Arrhenius acid & Bronsted-Lowry acid
Explanation:
Answer:

Explanation:
Let us look at all the answers definitions,
Sponsor would not work as it talks about a company offering you something in back for an advertisement.
Obtain would work as it means to acquire something.
Neglect would not work because it means to fail to care for something properly
Dismiss wouldn't work because it means to leave or allow to exit
Principal quantum number is n = 2, principal quantum number gives the energy shells electrons reside in,
angular momentum quantum number , these are the number of subshells and gives how many subshells are there in energy shells, values for l range from 0 to n-1
magnetic quantum number -m- gives the specific orbital in the subshells and their orientation.
spin quantum number gives the spin of the electrons.
in this case, n = 2
the types of subshells in n=2 are 0 and 1
0 - s subshell
1 - p subshell
the specific number of orbitals are given by -l to +l
when l = 1
then -1, 0 and +1
therefore there are 3 orbitals in p subshell and orbitals are in 3 orientations
each orbital can hold a maximum of 2 electrons,
since there are 3 orbitals each holding 6, there are 6 electrons to which these quantum numbers are the same
answer is 6
Answer:
4.96E-8 moles of Cu(OH)2
Explanation:
Kps es the constant referring to how much a substance can be dissolved in water. Using Kps, it is possible to know the concentration of weak electrolytes. Then, pKps is the minus logarithm of Kps.
Now, we know that sodium hydroxide (NaOH) is a strong electrolyte, who is completely dissolved in water. Therefore the pH depends only on OH concentration originating from NaOH. Let us to figure out how much is that OH concentration.
![pH= -log[H]\\pH= -log (\frac{kw}{[OH]})](https://tex.z-dn.net/?f=pH%3D%20-log%5BH%5D%5C%5CpH%3D%20-log%20%28%5Cfrac%7Bkw%7D%7B%5BOH%5D%7D%29)
![8.23 = - log(\frac{Kw}{[OH]} \\10^{-8.23} = Kw/[OH]\\ [OH] = Kw/10^{-8.23}](https://tex.z-dn.net/?f=8.23%20%3D%20-%20log%28%5Cfrac%7BKw%7D%7B%5BOH%5D%7D%20%5C%5C10%5E%7B-8.23%7D%20%3D%20Kw%2F%5BOH%5D%5C%5C%20%5BOH%5D%20%3D%20Kw%2F10%5E%7B-8.23%7D)
![[OH]=1.69E-6](https://tex.z-dn.net/?f=%5BOH%5D%3D1.69E-6)
This concentration of OH affects the disociation of Cu(OH)2. Let us see the dissociation reaction:

In the equilibrum, exist a concentration of OH already, that we knew, and it will be added that from dissociation, called "s":
The expression for Kps is:
![Kps= [Cu^{2+}] [OH]^2](https://tex.z-dn.net/?f=Kps%3D%20%5BCu%5E%7B2%2B%7D%5D%20%5BOH%5D%5E2)
The moles of (CuOH)2 soluble are limitated for the concentration of OH present, according to the next equation.

"s" is the soluble quantity of Cu(OH)2.
The solution for this third grade equation is 
Now, let us calculate the moles in 1 L:
