Answer:
1.6 m/s
Explanation:
First you need to find the momentums of each disc by multiplying their velocities with mass.
disc 1: 7*1= 7 kg m/s
disc 2: 1*9= 9 kg m/s
Second, you need to find the total momentum of the system by adding the momentums of each sphere.
9+7= 16 kg m/s
Because momentum is conserved, this is equal to the momentum of the composite body.
Finally, to find the composite body's velocity, divide its total momentum by its mass. This is because mass*velocity=momentum
16/10=1.6
The velocity of the composite body is 1.6 m/s.
-- Since it's a cube, its length, width, and height are all the same 4 cm .
-- Its volume is (length x width x height) = 64 cm³ .
-- Density = (mass) / (volume)
= (176 g) / (64 cm³)
= 2.75 gm/cm³ .
Answer: vl = 2.75 m/s vt = 1.5 m/s
Explanation:
If we assume that no external forces act during the collision, total momentum must be conserved.
If both cars are identical and also the drivers have the same mass, we can write the following:
m (vi1 + vi2) = m (vf1 + vf2) (1)
The sum of the initial speeds must be equal to the sum of the final ones.
If we are told that kinetic energy must be conserved also, simplifying, we can write:
vi1² + vi2² = vf1² + vf2² (2)
The only condition that satisfies (1) and (2) simultaneously is the one in which both masses exchange speeds, so we can write:
vf1 = vi2 and vf2 = vi1
If we call v1 to the speed of the leading car, and v2 to the trailing one, we can finally put the following:
vf1 = 2.75 m/s vf2 = 1.5 m/s
The answer is <em>Compressional Stress
</em>
In geology, stress<span> is the force per unit area that is placed on a rock. ... This is called confining </span>stress<span>. Compression squeezes rocks together, </span>causing<span> rocks to fold or fracture (break). Compression is the most common </span>stress<span> at </span>convergent plate boundaries<span>.
I hope this helped!! Have a great day :D</span>
A. Angular momentum is always conserved would be the correct answer.
This is because like linear momentum (mvmv), angular momentum (r×mvr×mv) is a conserved quantity, where rr is the vector from the center of rotation. For a skater holding a static pose, for each particle making up her body, the contribution in magnitude to the total angular momentum is given by mirivimirivi. Thus bringing in her arms reduces riri for those particles. In order to conserve angular momentum, there is then an increase in the angular velocity.
hope this helps!