D is the correct answer, assuming that this is the special case of classical kinematics at constant acceleration. You can use the equation V = Vo + at, where Vo is the initial velocity, V is the final velocity, and t is the time elapsed. In D, all three of these values are given, so you simply solve for a, the acceleration.
A and C are clearly incorrect, as mass and force (in terms of projectile motion) have no effect on an object's motion. B is incorrect because it is not useful to know the position or distance traveled, unless it will help you find displacement. Even then, you would not have enough information to use a kinematics equation to find a.
its D
i hope this helps to future test takers. i took the test and had to retake it because their wasn't an answer
<h2>
Answer: 0.17</h2>
Explanation:
The Stefan-Boltzmann law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":
(1)
Where:
is the energy radiated by a blackbody radiator per second, per unit area (in Watts). Knowing 
is the Stefan-Boltzmann's constant.
is the Surface area of the body
is the effective temperature of the body (its surface absolute temperature) in Kelvin.
However, there is no ideal black body (ideal radiator) although the radiation of stars like our Sun is quite close. So, in the case of this body, we will use the Stefan-Boltzmann law for real radiator bodies:
(2)
Where
is the body's emissivity
(the value we want to find)
Isolating
from (2):
(3)
Solving:
(4)
Finally:
(5) This is the body's emissivity
Answer:
(A) Total energy will be equal to 
(b) Energy density will be equal to 
Explanation:
We have given diameter of the plate d = 2 cm = 0.02 m
So area of the plate 
Distance between the plates d = 0.50 mm = 
Permitivity of free space 
Potential difference V =200 volt
Capacitance between the plate is equal to 
(a) Total energy stored in the capacitor is equal to


(b) Volume will be equal to
, here A is area and d is distance between plates

So energy density 
Answer:
6.667 m/s
Explanation:
500 meters = 75 seconds
500 meters / 75 seconds = 6.667 m/s