Answer:
(a) Friction force = 50 N
(b) Work done by friction = 300 j
(c) Net work done = 0 j
Explanation:
We have given that the box is pulled by 6 meter so d = 6 m
Force applied on the box F = 60 N
We have have given that velocity is constant so acceleration will be zero
So to applied force will be utilized in balancing the friction force
So friction force 
Work done by friction force 
Work done by applied force 
So net work done = 300-300 = 0 j
You can decrease the mass, or you can increase the force applied to the object
Correct answer choice is:
D. A frequency higher than the original frequency.
Explanation:
This is a true case of Doppler's effect. The Doppler effect can be defined as the effect originated by a traveling source of waves in which there is a visible higher variation in pulse for observers towards what the source is progressing and a visible descending shift in rate for observers from what the source is dropping.
Answer:
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2
Explanation:
The distance travelled on the rough ice is equal to the width of the rough ice.
distance d = 5.0 m
Initial speed u = 9.2 m/s
Final speed v = 5.8 m/s
The time taken to move through the rough ice can be calculated using the equation of motion;
d = 0.5(u+v)t
time t = 2d/(u+v)
Substituting the given values;
t = 2(5)/(9.2+5.8)
t = 2/3 = 0.66667 second
The acceleration is the change in velocity per unit time;
acceleration a = ∆v/t
a = (v-u)/t
Substituting the values;
a = (5.8-9.2)/0.66667
a = -5.099974500127
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2