The speed of the object can be calculated using the formula:
Speed = distance/time
The given values are:
distance = 62.43 m
time = 38.4 s
Solution:
speed = 62.43 m / 38.4 s = 1.63 m/s
Therefore, the speed of an object that travels 62.43m in 38.4s is <span> 1.63 m/s.</span>
Answer:
s₁ = 0.022 m
Explanation:
From the law of conservation of momentum:

where,
m₁ = mass of hockey player = 97 kg
m₂ = mass of puck = 0.15 kg
u₁ = u₂ = initial velocities of puck and player = 0 m/s
v₁ = velocity of player after collision = ?
v₂ = velocity of puck after hitting = 48 m/s
Therefore,

negative sign here shows the opposite direction.
Now, we calculate the time taken by puck to move 14.5 m:

Now, the distance covered by the player in this time will be:

<u>s₁ = 0.022 m</u>
Answer:
I'm not sure but I think it's 35-39
Answer:
Torque, 
Explanation:
It is given that,
Length of the wrench, l = 0.5 m
Force acting on the wrench, F = 80 N
The force is acting upward at an angle of 60.0° with respect to a line from the bolt through the end of the wrench. We need to find the torque is applied to the nut. We know that torque acting on an object is equal to the cross product of force and distance. It is given by :



So, the torque is applied to the nut is 34.6 N.m. Hence, this is the required solution.
What are the "following" devices ? ?
I think they're a list of choices that you have but aren't sharing.
A few devices associated with the reception of various types of
radio signals include the resonant tank, the local oscillator, the
mixer, the detector, the coherer, the discriminator, the parabolic
reflector, the lecher wires, the audio transducer, the demultiplexer,
and ... my personal guess ... the 'antenna' or 'aerial'.