1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lapatulllka [165]
3 years ago
7

How do you calculate the mass of an object accelerating at22.35m/s2 with a force of 120N

Physics
1 answer:
Arte-miy333 [17]3 years ago
3 0

Answer:

The mass of object is calculated as 5.36 kg

Explanation:

The known terms to find the mass are:

           acceleration of object (a) = 22.35 m/s^{2}

                        Force exerted (F) = 120N

                        mass of an object (m) = ?

From Newton's second law of motion;

                                   F = ma

                           or, 120 = m × 22.35

                          or, m= \frac{120}{22.35} kg

                           ∴ m = 5.36 kg

You might be interested in
How many hydrogen atoms are there in all the reactants?
Alinara [238K]

Answer:

<em>T</em><em>h</em><em>e</em><em>r</em><em>e</em><em> </em><em>are</em><em> </em><em>t</em><em>wo hydrogen </em><em>atom</em><em> </em><em>in</em><em> </em><em>all</em><em> </em><em>the</em><em> </em><em>reactants</em><em>.</em>

6 0
3 years ago
Read 2 more answers
Consider a 100 g object dropped from a height of 1 m. Assuming no air friction (drag), when will the object hit the ground and a
Katyanochek1 [597]

Answer:

speed and time are Vf = 4.43 m/s and  t = 0.45 s

Explanation:

This is a problem of free fall, we have the equations of kinematics

      Vf² = Vo² + 2g x

As the object is released the initial velocity is zero, let's look at the final velocity with the equation

      Vf = √( 2 g X)

      Vf = √(2 9.8  1)

      Vf = 4.43 m/s

This is the speed with which it reaches the ground

 

Having the final speed we can find the time

      Vf = Vo + g t

       t = Vf / g

       t = 4.43 / 9.8

       t = 0.45 s

This is the time of fall of the body to touch the ground

3 0
4 years ago
A 48.0-kg astronaut is in space, far from any objects that would exert a significant gravitational force on him. He would like t
marusya05 [52]

Answer:

The astronaut is moving at a speed of 0.36m/s

Explanation:

Speed here corresponds to velocity

The astronaut's mass = 48kg

velocity of astronaut = ?

mass of socket = 0.72kg

velocity of socket = 5m/s

mass of the spanner = 0.8kg

velocity of spanner = 8m/s

change in time = 0.05 -0 = 0.05sec

mass of the mallet = 1.2kg

velocity of mallet = 6m/s

change in time = 9.9 -0 = 9.9sec

To find the astronaut velocity, we would calculate the total momentum which is the astronaut.

∑momentum (M) = ∑astronaut momentum

∑M = ∑astronaut M

∑astronaut M = M of socket + M of spanner + M of mallet

momentum = mass × velocity

(mass × velocity)of astronaut = (0.72×5) + (0.8×8) + (1.2×6)

48 × velocity of astronaut= 3.6 + 6.4 + 7.2

48 × velocity of astronaut= 17.2

velocity of astronaut = 17.2/48

velocity of astronaut = 0.36m/s

The astronaut is moving at a speed of 0.36m/s

5 0
3 years ago
A point charge q1q1 is held stationary at the origin. A second charge q2q2 is placed at point aa, and the electric potential ene
Yuri [45]

Explanation:

The given data is as follows.

            U_{a} = 5.4 \times 10^{-8} J

        W_{/text{a to b}} = -1.9 \times 10^{-8} J

        Electric potential energy (U_{b}) = ?

Formula to calculate electric potential energy is as follows.

            U_{b} = U_{a} - W_{/text{a to b}}

                        = 5.4 \times 10^{-8} J - (-1.9 \times 10^{-8} J)

                        = 7.3 \times 10^{-8} J

Thus, we can conclude that the electric potential energy of the pair of charges when the second charge is at point b is 7.3 \times 10^{-8} J.

6 0
4 years ago
A cyclist going downhill is accelerating at 1. 2 m/s2. If the final velocity of the cyclist is 16 m/s after 10 seconds, what is
mel-nik [20]

Answer:

\boxed {\boxed {\sf v_i= 4 \ m/s}}

Explanation:

We are asked to find the cyclist's initial velocity. We are given the acceleration, final velocity, and time, so we will use the following kinematic equation.

v_f= v_i + at

The cyclist is acceleration at 1.2 meters per second squared. After 10 seconds, the velocity is 16 meters per second.

  • v_f= 16 m/s
  • a= 1.2 m/s²
  • t= 10 s

Substitute the values into the formula.

16 \ m/s = v_i + (1.2 \ m/s^2)(10 \ s)

Multiply.

16 \ m/s = v_i + (1.2 \ m/s^2 * 10 \ s)

16 \ m/s = v_i + 12 \ m/s

We are solving for the initial velocity, so we must isolate the variable v_i. Subtract 12 meters per second from both sides of the equation.

16 \ m/s - 12 \ m/s = v_i + 12 \ m/s -12 \ m/s

4 \ m/s = v_i

The cyclist's initial velocity is <u>4 meters per second.</u>

6 0
3 years ago
Other questions:
  • zeros are always considered significant digits when they are to the left of the decimal point True or False
    11·2 answers
  • I need help on question 5
    12·1 answer
  • At what point in its swing is potential energy a maximum?<br> E<br> B<br> D<br> A<br> C
    13·1 answer
  • If an engine has a compression ratio of 7:1,
    7·2 answers
  • 2. What is the weight of an object if 75 J of<br> work is done to lift it uniformly 6.0 m?
    15·1 answer
  • Which of the following will increase stability?
    14·1 answer
  • Define momentum in term of mass and velocity​
    15·1 answer
  • GIVING BRAINLIEST TO THE RIGHT ANSWER examine the information for the two samples described in the chart. How are zinc and sodiu
    12·2 answers
  • The current in a lightning bolt is 2.6 x 105
    15·1 answer
  • Acceleration can occur when a car is moving at a constant speed. what must cause this acceleration?​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!