Greenhouse gases trap thermal energy and reflect the sun’s harmful radiation back to Earth is the answer
im not 100% sure tho
hope it helps:))
Answer : The final pressure in the two containers is, 2.62 atm
Explanation :
Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.

Thus, the expression for final pressure in the two containers will be:


where,
= pressure of N₂ gas = 4.45 atm
= pressure of Ar gas = 2.75 atm
= volume of N₂ gas = 3.00 L
= volume of Ar gas = 2.00 L
P = final pressure of gas = ?
V = final volume of gas = (4.45 + 2.75) L = 7.2 L
Now put all the given values in the above equation, we get:


Thus, the final pressure in the two containers is, 2.62 atm
Answer:
is the drop in the water temperature.
Explanation:
Given:
- mass of ice,

- mass of water,

Assuming the initial temperature of the ice to be 0° C.
<u>Apply the conservation of energy:</u>
- Heat absorbed by the ice for melting is equal to the heat lost from water to melt ice.
<u>Now from the heat equation:</u>

......................(1)
where:
latent heat of fusion of ice 
specific heat of water 
change in temperature
Putting values in eq. (1):

is the drop in the water temperature.
Answer:

at t = 0.001 we have

at t = 0.01

at t = infinity

Explanation:
As we know that they are in series so the voltage across all three will be sum of all individual voltages
so it is given as

now we will have

now we have

So we will have

at t = 0 we have
q = 0

also we know that
at t = 0 i = 0




so we have

at t = 0.001 we have

at t = 0.01

at t = infinity

The average power is 
Explanation:
First of all, we calculate the work done to accelerate the car; according to the work-energy theorem, the work done is equal to the change in kinetic energy of the car:
where
:
is the final kinetic energy of the car, with
m = 2000 kg is the mass of the car
v = 60 m/s is the final speed of the car
is the initial kinetic energy of the car, with
u = 30 m/s is initial speed of the car
Soolving:
Now we can find the power required for the acceleration, which is given by

where
t = 9 s is the time elapsed
Solving:

Learn more about power:
brainly.com/question/7956557
#LearnwithBrainly