Answer: A) 
Explanation:
The equation for the moment of inertia
of a sphere is:
(1)
Where:
is the moment of inertia of the planet (assumed with the shape of a sphere)
is the mass of the planet
is the radius of the planet
Isolating
from (1):
(2)
Solving:
(3)
Finally:
Therefore, the correct option is A.
Answer:
a)P₂ =4 bar
b)W= - 1482.48 KJ
It means that work done on the system.
c)S₂ - S₁ = 3.42 KJ/K
Explanation:
Given that
T₁ = 300 K ,V₁ = 3 m³ ,P₁=2 bar
T₂ = 600 K ,V₂=V₁ 3 m³
Given that tank is rigid and insulated.It means that volume of the gas will remain constant.
Lets take the final pressure = P₂
For ideal gas P V = m R T



P₂ =4 bar
Internal energy
ΔU = m Cv ΔT
Cv=0.71 KJ/kg.k for air


m= 6.96 kg
ΔU= 6.96 x 0.71 x (600 - 300)
ΔU=1482.48 KJ
From first law
Q= ΔU + W
Q= 0 Insulated
W = - ΔU
W= - 1482.48 KJ
It means that work done on the system.
Change in the entropy


S₂ - S₁ = 3.42 KJ/K
Answer:
it will be 1/√2 of its original period.
Explanation:
Answer:
5235.84 kg
Explanation:
There is one theorem - whose proof I will never remember without having to drag calculus in there - that says that the variation of momentum is equal to the force applied times the time the application last.
As long as the engine isn't ejecting mass - at this point it's a whole new can of worm - we know the force, we know the variation in speed, time to find the mass. But first, let's convert the variation of speed in meters per second. The ship gains 250 kmh,
;

Answer:à
Explanation:waves carry energy in the direction in which they move