The function ...
... g = |x| + 1
will map any integer x into the set of positive integers g.
The answer for this question is "y = -5/3 and x = 8/3"
see the attached figure to better understand the problem
we have that

Step 1
<u>Find the value of AC</u>
we know that
in the right triangle ABC

substitute the values in the formula

Step 2
<u>Find the value of BC</u>
we know that
in the right triangle ABC
Applying the Pythagorean Theorem

substitute the values

Step 3
<u>Find the value of BD</u>
we know that
in the right triangle BCD
Applying the Pythagorean Theorem

substitute the values


therefore
<u>the answer is</u>
the length of BD is 11.93 units
Answer: Only B
============================================
Explanation:
For situation A,
- x is the input and it represents the student's name.
- y is the output and it represents the colors the student likes.
The pairing (x,y) tells us what a certain student likes in terms of color.
For example, the point (Allen, Red) tells us that Allen likes the color red. We could also have (Allen, Green) telling us he also likes green. Because the input "Allen" maps to more than one output, this means situation A is not a function. A function is only possible if any given input maps to exactly to one output. The input must be in the domain. The domain in this case is the set of all students in the classroom.
In contrast, Situation B is a function because a student will only have one favorite math teacher. I'm interpreting this to mean "number one favorite" and not a situation where a student can select multiple favorites.
Answer:
option c is correct.
Step-by-step explanation:
![7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{16x}\right)-3\left(\sqrt[3]{8x}\right)](https://tex.z-dn.net/?f=7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B16x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B8x%7D%5Cright%29)
WE need to simplify this equation.
Solve the parenthesis of each term.
![=7\left\sqrt[3]{2x}\right-3\left\sqrt[3]{16x}\right-3\left\sqrt[3]{8x}\right](https://tex.z-dn.net/?f=%3D7%5Cleft%5Csqrt%5B3%5D%7B2x%7D%5Cright-3%5Cleft%5Csqrt%5B3%5D%7B16x%7D%5Cright-3%5Cleft%5Csqrt%5B3%5D%7B8x%7D%5Cright)
Now, We will find factors of the terms inside the square root
factors of 2: 2
factors of 16 : 2x2x2x2
factors of 8: 2x2x2
Putting these values in our equation:![=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2X2X2X2 x}\right)-3\left(\sqrt[3]{2X2X2 x}\right)\\=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2X2X2} \sqrt[3] {2 x}\right)-3\left(\sqrt[3]{2X2X2} \sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2^3} \sqrt[3] {2 x}\right)-3\left(\sqrt[3]{2^3} \sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2x}\right)-3*2\left(\sqrt[3] {2 x}\right)-3*2\left(\sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2}\sqrt[3]{x}\right)-6\left(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)](https://tex.z-dn.net/?f=%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2X2%20x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2%20x%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2%7D%20%5Csqrt%5B3%5D%20%7B2%20x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2%7D%20%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2%5E3%7D%20%5Csqrt%5B3%5D%20%7B2%20x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2%5E3%7D%20%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%2A2%5Cleft%28%5Csqrt%5B3%5D%20%7B2%20x%7D%5Cright%29-3%2A2%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%5Cright%29-6%5Cleft%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29)
Adding like terms we get:
![=7\left(\sqrt[3]{2}\sqrt[3]{x}\right)-6\left(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right\\=(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)\\](https://tex.z-dn.net/?f=%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%5Cright%29-6%5Cleft%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%5C%5C%3D%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C)
![(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)\\can\,\,be \,\, written\,\, as\,\,\\(\sqrt[3] {2x})-6\left(\sqrt[3]{x}\right)](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5Ccan%5C%2C%5C%2Cbe%20%5C%2C%5C%2C%20written%5C%2C%5C%2C%20as%5C%2C%5C%2C%5C%5C%28%5Csqrt%5B3%5D%20%7B2x%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29)
So, option c is correct