1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tresset [83]
3 years ago
6

The box leaves position x=0x=0 with speed v0v0. The box is slowed by a constant frictional force until it comes to rest at posit

ion x=x1x=x1. Find FfFfF_f, the magnitude of the average frictional force that acts on the box. (Since you don't know the coefficient of friction, don't include it in your answer.) Express the frictional force in terms of mmm, v0v0v_0, and x1x1x_1.
Physics
1 answer:
const2013 [10]3 years ago
8 0

Answer:

fr = ½ m v₀²/x

Explanation:

This exercise the body must be on a ramp so that a component of the weight is counteracted by the friction force.

The best way to solve this exercise is to use the energy work theorem

            W = ΔK

Where work is defined as the product of force by distance

           W = fr x cos 180

The angle is because the friction force opposes the movement

          Δk =K_{f} –K₀

          ΔK = 0 - ½ m v₀²

We substitute

         - fr x = - ½ m v₀²      

           fr = ½ m v₀²/x

You might be interested in
An electron is released from rest at the negative plate of a parallel plate capacitor and accelerates to the positive plate (see
mash [69]

Answer:

(7.90 × 10⁻¹⁵) J

Explanation:

The electric force exerted on the elecrron by rhe electric field is given by

F = qE

where |q| = charge on the particle = (1.602 × 10⁻¹⁹) C

E = magnitude of the electric field = (2.9 × 10⁶) V/m or N/C

F = 1.602 × 10⁻¹⁹ × 2.9 × 10⁶ = (4.646 × 10⁻¹³) N

From Newton's first law of motion relation, we can obtain the acceleration this force confers on the electron

F = ma

m = mass of the electron = (9.11 × 10⁻³¹) kg

a = acceleration of the electron caused by the electric force = ?

(4.646 × 10⁻¹³) = (9.11 × 10⁻³¹) × a

a = (4.646 × 10⁻¹³)/(9.11 × 10⁻³¹)

a = (5.10 × 10¹⁷) m/s²

Now, using the equations of motion, we can obtain the velocity with which the electron reaches the positive plate

u = initial velocity of the electron = 0 m/s (since the electron was initially at rest)

v = final velocity of the electron = ?

a = acceleration of the electron = (5.10 × 10¹⁷) m/s²

y = distance covered by the electron = 1.7 cm = 0.017 m

v² = u² + 2ay

v² = 0² + 2(5.10 × 10¹⁷)(0.017)

v² = (1.734 × 10¹⁶)

v = 131,677,182.5 m/s = (1.32 × 10⁸) m/s

Kinetic energy with which the electron hits the positive plate = (1/2)(m)(v²) = (1/2)(9.11 × 10⁻³¹)(1.32 × 10⁸)² = (7.90 × 10⁻¹⁵) J

Hope this Helps!!!

3 0
3 years ago
Which of these describes a real image?
Margaret [11]
Image from a far away object formed by a concave mirror

I have no idea but this is my best guess as a sophomore in college
8 0
3 years ago
At a particular instant, a proton at the origin has velocity < 5e4, -2e4, 0> m/s. You need to calculate the magnetic field
vesna_86 [32]

Answer:

9.7\times 10^{-5} T

Explanation:

Velocity =5\times 10^4i-2\times 10^4j

r=0.03i+0.05j

r=\mid r\mid=\sqrt{(0.03)^2+(0.05)^2}=0.058

v=\mid V\mid=\sqrt{(5\times 10^4)^2+(-2\times 10^{4})^2}=5.39\times 10^{2}

We know that

B=\frac{mv}{qr}

Where q=1.6\times 10^{-19} C

Mass of proton=1.67\times 10^{-27} kg

Using the formula

B=\frac{1.67\times 10^{-27}\times 5.39\times 10^2}{1.6\times 10^{-19}\times 0.058}

B=9.7\times 10^{-5} T

3 0
3 years ago
Sam's job at the amusement park is to slow down and bring to a stop the boats in the log ride. If a boat and its riders have a m
shutvik [7]

Answer:

Sam will do 1152 J of work to stop the boat

Explanation:

Work: This is defined as the product of force and distance, the S.I unit of work is Joules. At any point in science, during calculation Energy and worked can be interchange because they have the same unit.

E = W = 1/2mv²................ Equation 1

Where E = energy, W = work, m = mass, v = velocity.

Given: m = 900 kg, v = 1.6 m/s

Substituting these values into equation 1

W = 1/2(900)(1.6)²

W = 450×2.56

W = 1152 J.

Therefore Sam will do 1152 J of work to stop the boat

7 0
4 years ago
Write a numerical expression for the emissive intensity (in W/m^2.sr) coming out of a tiny hole in an enclosure of surface tempe
stiks02 [169]

Answer:

6.0 × 10^{11} W/m^{2}

Explanation:

From Wien's displacement formula;

Q = e AT^{4}

Where: Q is the quantity of heat transferred, e is the emissivity of the surface, A is the area, and T is the temperature.

The emissive intensity = \frac{Q}{A} = eT^{4}

Given from the question that: e = 0.6 and T = 1000K, thus;

emissive intensity = 0.6 × (1000)^{4}

                             = 0.6 × 1.0 × 10^{12}

                             = 6.0 × 10^{11} \frac{W}{m^{2} }

Therefore, the emissive intensity coming out of the surface is 6.0 × 10^{11} W/m^{2}.

3 0
3 years ago
Other questions:
  • Explain what happens to the pitch of a cell phone ring when the amplitude of a sound wave increases. Justify your reasoning usin
    13·1 answer
  • A rock is thrown 0.8 meters into the air. how fast was it thrown?
    7·1 answer
  • What is frictional force?​
    13·2 answers
  • Which New York State landscape region is mostly composed of horizontal sedimentary bedrock at high elevations?A. Hudson Highland
    11·1 answer
  • In equilibrium, ________. Group of answer choices the ratio of marginal benefits to income should be identical across all goods
    10·1 answer
  • A typical AA size rechargeable NiMH battery can store 1100-2100 mAh of electric charge. The small print on the battery in your h
    13·1 answer
  • What are beats? A. periodic fluctuations in the velocity of sound waves B. periodic fluctuations in the wavelength of sound wave
    6·2 answers
  • crowbar of 5 metre is used to lift an object of 800 metre if the effort arm is 200cm calculate the force applied​
    12·1 answer
  • Describe briefly the potential energy it has ( roller coaster)
    10·1 answer
  • A teacher told a learner to react benzene (CH) with chlorine (Cl₂) to
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!