Traits are basically your phenotype. They include things like hair color, height, and eye color. Alleles are versions of genes. ... This is a pretty basic idea of how traits and alleles are related.
Answer:
The frog takes 8 jumps to reach top of well
Explanation:
Given data
Frog at bottom=17 foot
Each time frog leaps 3 feet
Frog has not reached the top of the well, then the frog slides back 1 foot
To Find
Total number of leaps the frog needed to escape from well
Solution
in 1 jump distance jumped=3+(-1)
=2 feet
=2×1 feet
The "-1" is because the frog goes back
Now After 2 jumps the distance jumped as:
Distance Jumped=2+2
Distance Jumped=2*2
=4 feet
Similarly after 7 jumps
Distance Jumped=2+2+......+2
Distance Jumped=2*7
=14 feet
Now after 8th jump the frog climbs but doesnot slide back as it is reached to the top of well.
So
Distance Jumped=(Distance Jumped after 7 jumps)+3
=14+3
=17 feet
The frog takes 8 jumps to reach top of well
Answer:
The resultant force would (still) be zero.
Explanation:
Before the 600-N force is removed, the crate is not moving (relative to the surface.) Its velocity would be zero. Since its velocity isn't changing, its acceleration would also be zero.
In effect, the 600-N force to the left and 200-N force to the right combines and acts like a 400-N force to the left.
By Newton's Second Law, the resultant force on the crate would be zero. As a result, friction (the only other horizontal force on the crate) should balance that 400-N force. In this case, the friction should act in the opposite direction with a size of 400 N.
When the 600-N force is removed, there would only be two horizontal forces on the crate: the 200-N force to the right, and friction. The maximum friction possible must be at least 200 N such that the resultant force would still be zero. In this case, the static friction coefficient isn't known. As a result, it won't be possible to find the exact value of the maximum friction on the crate.
However, recall that before the 600-N force is removed, the friction on the crate is 400 N. The normal force on the crate (which is in the vertical direction) did not change. As a result, one can hence be assured that the maximum friction would be at least 400 N. That's sufficient for balancing the 200-N force to the right. Hence, the resultant force on the crate would still be zero, and the crate won't move.
Answer:
Explanation:
We are given that
We have to find the exit temperature.
By steady energy flow equation
Substitute the values
Answer:
a) E = -4 10² N / C
, b) x = 0.093 m, c) a = 10.31 m / s², θ=-71.9⁰
Explanation:
For that exercise we use Newton's second Law, in the attached we can see a free body diagram of the ball
X axis
- = m a
Axis y
- W = 0
Initially the system is in equilibrium, so zero acceleration
Fe =
T_{y} = W
Let us search with trigonometry the components of the tendency
cos θ = T_{y} / T
sin θ = / T
T_{y} = cos θ
= T sin θ
We replace
q E = T sin θ
mg = T cosθ
a) the electric force is
= q E
E = / q
E = -0.032 / 80 10⁻⁶
E = -4 10² N / C
b) the distance to this point can be found by dividing the two equations
q E / mg = tan θ
θ = tan⁻¹ qE / mg
Let's calculate
θ = tan⁻¹ (80 10⁻⁶ 4 10² / 0.01 9.8)
θ = tan⁻¹ 0.3265
θ = 18
⁰
sin 18 = x/0.30
x =0.30 sin 18
x = 0.093 m
c) The rope is cut, two forces remain acting on the ball, on the x-axis the electric force and on the axis and the force gravitations
X axis
= m aₓ
aₓ = q E / m
aₓ = 80 10⁻⁶ 4 10² / 0.01
aₓ = 3.2 m / s²
Axis y
W = m
a_{y} = g
a_{y} = 9.8 m/s²
The total acceleration is can be found using Pythagoras' theorem
a = √ aₓ² + a_{y}²
a = √ 3.2² + 9.8²
a = 10.31 m / s²
The Angle meet him with trigonometry
tan θ = a_{y} / aₓ
θ = tan⁻¹ a_{y} / aₓ
θ = tan⁻¹ (-9.8) / 3.2
θ = -71.9⁰
Movement is two-dimensional type with acceleration in both axes