Answer: student b ran up the stairs faster
Explanation:if they were going up the same stair case and student b got up there faster that means he was running therefore student b was using more power
Answer:
The positive velocity occurs the instant the coin leaves our hand. It immediately begins slowing up until its upward velocity becomes zero at the maximum height.
Explanation:
hope helps ohjieun and jannatparia
Answer:
The normal force the seat exerted on the driver is 125 N.
Explanation:
Given;
mass of the car, m = 2000 kg
speed of the car, u = 100 km/h = 27.78 m/s
radius of curvature of the hill, r = 100 m
mass of the driver, = 60 kg
The centripetal force of the driver at top of the hill is given as;

where;
Fc is the centripetal force
is downward force due to weight of the driver
is upward or normal force on the drive

Therefore, the normal force the seat exerted on the driver is 125 N.
Answer:
D
Explanation:
We must never use a piece of pipe as a leverage extension on the handle on a wrench.
Hence option d is correct.
Answer:
8) 709.8875 J
9) The object is at 7.24375 m from the ground
10) Kinetic energy increases as the object falls.
Explanation:
We use the expression for the displacement h(t) as a function of time of an object experiencing free fall:
h(t) = hi - (g/2) t^2
hi being the initial position of the object (10m) above ground, g the acceleration of gravity (9.8 m/s^2), and t the time (in our case 0.75 seconds):
h(0.75) = 10 - 4/9 (0.75)^2 = 7.24375 m
This is the position of the 10 kg object after 0.75 seconds (answer for part 9)
Knowing this position we can calculate the potential energy of the object when it is at this height, using the formula:
U = m g h = 10kg * 9.8 (m/s^2) * 7.24375 m = 709.8875 J (answer for part 8)
Part 10)
the kinetic energy of the object increases as it gets closer to ground, since its velocity is increasing in magnitude because is being accelerated in its motion downwards.