Given there are three blocks of masses , and (ref image in attachment)
When all three masses move together at an acceleration a, the force F is given by
F = ( + + ) *a ................(equation 1)
Also it is given that does not move with respect to , which gives tension T is exerted on pulley by only, Hence tension T is
T = *a ..........(equation 2)
There is also also tension exerted by . There are two components here: horizontal due to acceleration a and vertical component due to gravity g. Thus tension is given by
T = ................(equation 3)
From equation 2 and 3, we get
*a =
Squaring both sides we get
* = * (+)
* = ( * )+ ( *)
( - ) * = *
= */( - )
Taking square root on both sides, we get acceleration a
a = *g/()
Hence substituting the value of a in equation 1, we get
To look for displacement, just draw a vector from your beginning stage to your last position and settle for the length of this line. So we begin by drawing a line to the north which is 30 ft, since it is north, the line is going up, then it move 5 ft to the south, so put a line going down, so we are in 25 ft, North so that would be the answer.