Answer:
The options are not shown, so let's derive the relationship.
For an object that is at a height H above the ground, and is not moving, the potential energy will be:
U = m*g*H
where m is the mass of the object, and g is the gravitational acceleration.
Now, the kinetic energy of an object can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Now, when we drop the object, the potential energy begins to transform into kinetic energy, and by the conservation of the energy, by the moment that H is equal to zero (So the potential energy is zero) all the initial potential energy must now be converted into kinetic energy.
Uinitial = Kfinal.
m*g*H = (1/2)*m*v^2
v^2 = 2*g*H
v = √(2*g*H)
So we expressed the final velocity (the velocity at which the object impacts the ground) in terms of the height, H.
26.2/3.4 would be the average velocity for the run.
7.7 miles/hr
Answer:
the spear will end up above the fish relative to the actual position of the fish.
Explanation:
due to refraction of light coming from the fish the fish will appear slightly above from its real position
So due to this refraction the spearfisher will throw the spear directly at the image of the fish due to which it will not reach the position of fish but it will reach the position above the fish.
So here we can say that the spear will end up above the fish relative to the actual position of the fish
Answer:
F=5449 N
Explanation:
Work done is a product of force and displacement ie
Work done, W, = Force*Displacement
Power, P, is Work done/Time
where P is power, W is work done, F is force, S is displacement and t is time
In this case, F is the frictional force. Converting the power from hp to W, we multiply by 746 hence P=746*168=125328 W
Since displacement/time is velocity, then
P=FV where V is velocity in m/s
Making F the subject
![F=\frac {P}{V}](https://tex.z-dn.net/?f=F%3D%5Cfrac%20%7BP%7D%7BV%7D)
![F=\frac {125328}{23}=5449.043478 N](https://tex.z-dn.net/?f=F%3D%5Cfrac%20%7B125328%7D%7B23%7D%3D5449.043478%20%20N)
F=5449 N