energy associate with position or shape
1. The velocity decreases, and the kinetic energy decreases.
2. An increase in temperature difference between the inside and outside of the building.
3. The total kinetic energy remains the same.
4. 76,761 J
5. The energy loss must increase.
Answer
given,
ω₁ = 0 rev/s
ω₂ = 6 rev/s
t = 11 s
Using equation of rotational motion
The angular acceleration is
ωf - ωi = α t
11 α = 6 - 0
= 0.545 rev/s²
The angular displacement
θ₁= ωi t + (1/2) α t²
θ₁= 0 + (1/2) (0.545)(11)^2
θ₁= 33 rev
case 2
ω₁ = 6 rev/s
ω₂ = 0 rev/s
t = 14 s
Using equation of rotational motion
The angular acceleration is
ωf - ωi = α t
14 α = 0 - 6
= - 0.428 rev/s²
The angular displacement
θ₂= ωi t + (1/2) α t²
θ₂= 6 x 14 + (1/2) (-0.428)(14)^2
θ₂= 42 rev
total revolution in 25 s is equal to
θ = θ₁ + θ₂
θ = 33 + 42
θ = 75 rev
Answer:
Number value and direction
Explanation:
Vectors are quantities that can be identified by value and direction . Examples are velocity and acceleration
The focal length (in meters) of a lens whose radius of curvature is 9. 2 m and has a refractive index 1.2 will be 18.4 m
The focal length of a lens is determined when the lens is focused at infinity. Lens focal length tells us the angle of view—how much of the scene will be captured—and the magnification—how large individual elements will be.
Focal length of a lens is the distance between center of lens and focal point . Focal point is a point on principal axis , at which light rays parallel to principal axis meet after refraction through lens or seem to meet after refraction .
The radius of curvature is the radius of sphere formed by the convex or concave mirror. It is also equal to the distance between the pole and center of curvature. The sign convention for focal length and radius of curvature is the same.
focal length = 2 * radius of curvature
given
radius of curvature = 9.2 m
focal length = 2 * 9.2
= 18.4 m
To learn more about focal length here
brainly.com/question/16188698
#SPJ4