Answer:
a delta
Explanation:
The landform produced at the location E where the Mississippi River enters the Gulf of Mexico is a delta.
A delta is a depositional landform where a smaller body of water enters into a larger one.
The Gulf of Mexico contains a larger body of water and as the Mississippi river enters into it, it splits up into many distributaries.
So, this feature is a delta.
Answer:
a)
= 0.25 m / s b) u = 0.25 m / s
Explanation:
a) To solve this problem let's start with the conservation of the moment, for this we define a system formed by the ball plus the dog, in this case all the forces are internal and the moment is conserved
We will write the data
m₁ = 0.40 kg
v₁₀ = 9.0 m / s
m₂ = 14 kg
v₂₀ = 0
Initial
po = m₁ v₁₀
Final
= (m₁ + m₂) vf
po = pf
m₁ v₁₀ = (m₁ + m₂) 
= v₁₀ m₁ / (m₁ + m₂)
= 9.0 (0.40 / (0.40 +14)
= 0.25 m / s
b) This is the reference frame of the center of mass of the system in this case the speed of this frame is the speed of the center of mass
u = 0.25 m / s
In the direction of movement of the ball
c) Let's calculate the kinetic energy in both moments
Initial
K₀ = ½ m₁ v₁₀² +0
K₀ = ½ 0.40 9 2
K₀ = 16.2 J
Final
= ½ (m₁ + m₂)
2
= ½ (0.4 +14) 0.25 2
= 0.45 J
ΔK = K₀ - 
ΔK = 16.2-0.445
ΔK = 1575 J
These will transform internal system energy
d) In order to find the kinetic energy, we must first find the velocities of the individual in this reference system.
v₁₀’= v₁₀ -u
v₁₀’= 9 -.025
v₁₀‘= 8.75 m / s
v₂₀ ‘= v₂₀ -u
v₂₀‘= - 0.25 m / s
‘=
- u
= 0
Initial
K₀ = ½ m₁ v₁₀‘² + ½ m₂ v₂₀‘²
Ko = ½ 0.4 8.75² + ½ 14.0 0.25²
Ko = 15.31 + 0.4375
K o = 15.75 J
Final
= ½ (m₁ + m₂) vf’²
= 0
All initial kinetic energy is transformed into internal energy in this reference system
I don't know what you mean when you say he "jobs" the other ball, and the answer to this question really depends on that word.
I'm going to say that the second player is holding the second ball, and he just opens his fingers and lets the ball <u><em>drop</em></u>, at the same time and from the same height as the first ball.
Now I'll go ahead and answer the question that I've just invented:
Strange as it may seem, <em>both</em> balls hit the ground at the <em>same time</em> ... the one that's thrown AND the one that's dropped. The horizontal speed of the thrown ball has no effect on its vertical acceleration, so both balls experience the same vertical behavior.
And here's another example of the exact same thing:
Say you shoot a bullet straight out of a horizontal rifle barrel, AND somebody else <em>drops</em> another bullet at exactly the same time, from a point right next to the end of the rifle barrel. I know this is hard to believe, but both of those bullets hit the ground at the same time too, just like the baseballs ... the bullet that's shot out of the rifle and the one that's dropped from the end of the barrel.