Answer:
(a) T = 0.015 N
(b) M = 1.53 x 10⁻³ kg = 1.53 g
Explanation:
(a) T = 0.015 N
First, we will find the speed of waves:

where,
v = speed of wave = ?
f = frequency = 120 Hz
λ = wavelength = 6 cm = 0.06 m
Therefore,
v = (120 Hz)(0.06 m)
v = 7.2 m/s
Now, we will find the linear mass density of the coil:

where,
μ = linear mass density = ?
m = mass = 1.45 g = 1.45 x 10⁻³ kg
l = length = 5 m
Thereforre,

Now, for the tension we use the formula:

<u>T = 0.015 N</u>
<u></u>
(b)
The mass to be hung is:

<u>M = 1.53 x 10⁻³ kg = 1.53 g</u>
Answer:
1- C 2-B 3-B - these are ur best answers
Explanation:
Answer:
The the analysis for the free fall part should be done under the constant acceleration.
Explanation:
In the given problem, the jumper is falling under the free fall. Since, no external force is acting on the body therefore, the fall will be under the action gravity only. also, the acceleration due to gravity is always constant.
Therefore, the the analysis for the free fall part should be done under the constant acceleration.
The correct answer to the question above is that the magician is seeking the wavelength of the standing wave. The part of a standing sound wave, which is its wavelength, the magician is seeking when playing a musical note of a specific pitch.