A.
H₃C-CH₃
this is called ethane
B.
H₃C-CH₂-CH₂-CH₃
this is called butane
C.H₃C-CH₂-CH₂-CH₂-CH₂-CH₃
this is called hexane
D.
H₃C-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃
this is called heptane
Answer:

Explanation:
Hello!
In this case, since a dilution process implies that the moles of the solute remain the same before and after the addition of diluting water, we can write:

Thus, since we know the volume and concentration of the initial sample, we compute the resulting concentration as shown below:

Best regards!
Answer:
A
Explanation:
Iron has the ground state electronic configuration [Ar]3d64s2
Fe2+ has the electronic configuration [Ar]3d6.
In an octahedral crystal field, there are two sets of degenerate orbitals; the lower lying three t2g orbitals, and the higher level two degenerate eg orbitals. Strong field ligands cause high octahedral crystal field splitting, there by separating the two sets of degenerate orbitals by a tremendous amount of energy. This energy is much greater than the pairing energy required to pair the six electrons in three degenerate orbitals. Since CN- is a strong field ligand, it leads to pairing of six electrons in three degenerate orbitals
Answer:
The equilibrium expression is:
CoC2O4(s)⇌Co2+(aq)+C2O2−4(aq)
For this reaction:
Ksp = [Co2+][C2O2−4]=1.96×10−8
Explanation:
Batteries will not clot if cobalt ions are removed from its cells. Some blood collection tubes contain salts of the oxalate ion,
C2O2−4
, for this purpose. At sufficiently high concentrations, the calcium
and oxalate ions form solid, CoC2O4·H2O (which also contains water bound in the solid). The concentration of Co2+ in a sample of blood serum is 2.2 × 10–3M. What concentration of
C2O2−4
ion must be established before CoC2O4·H2O begins to precipitate.
CoC2O4 does not appear in this expression because it is a solid. Water does not appear because it is the solvent.
Solid CoC2O4 does not begin to form until Q equals Ksp. Because we know Ksp and [Co2+], we can solve for the concentration of
C2O2−4
that is necessary to produce the first trace of solid: