Answer:
Bohr model A
Explanation:
It has more valance electrons therefore has more interaction between the atoms and has more electronegativity.
Answer:
1.
Since both components of these solutions have the same molar mass, mole fractions would be the same as mass fractions.
0.110 atm = (2/3)(Pi) + (1/3)(Pn) [1]
0.089 atm = (1/3)(Pi) + (2/3)(Pn) [2]
2*[1] - [2]:
(2)(0.110) - 0.089 atm = Pi
Pi = 0.131 atm
2*[2] - [1]:
(2)(0.089) - 0.110 atm = Pn
Pn = 0.068 atm
2.
The hydroxyl (-OH) group on the end of a longer 1-propanol molecule makes it more polar than IPA. It follows that the intermolecular forces between 1-propanol are stronger than those of IPA and thus the vapor pressure of 1-propanol should be lower than IPA.
Explanation:
Answer:
13mL
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
HNO3 + KOH —> KNO3 + H2O
From the balanced equation above, we obtained the following data:
Mole ratio of the acid (nA) = 1
Mole ratio of the base (nB) = 1
Step 2:
Data obtained from the question.
This includes the following:
Molarity of the acid (Ma) = 6M
Volume of the acid (Va) =?
Volume of the base (Vb) = 39mL
Molarity of the base (Mb) = 2M
Step 3:
Determination of the volume of the acid.
Using the equation:
MaVa/MbVb = nA/nB, the volume of the acid can be obtained as follow:
MaVa/MbVb = nA/nB
6 x Va / 2 x 39 = 1/1
Cross multiply to express in linear form
6 x Va = 2 x 39
Divide both side by 6
Va = (2 x 39)/6
Va = 13mL
Therefore, the volume of the acid (HNO3) needed for the reaction is 13mL
Convection currents in the Earth's mantle cause plate movement which causes earthquakes and volcanic activity.