Answer:
The mass of SO2 will be equal to the sum of the mass of S and O2.
Explanation:
This can be explained by the <em>Law of Conservation of Mass</em>. This law states that mass can neither be created nor destroyed. Knowing this, we can say that the reactants of a chemical reaction must be equal to the products.
In this case, the reactants Sulfur (S) and Oxygen (O2) must equal the mass of the product Sulfur Dioxide (SO2). Therefore, the statement <em>"The mass of SO2 will be equal to the sum of the mass of S and O2" </em>is correct.
Molar mass RbMnO₄ = 204.40 g/mol
1 mole ---------- 204.40 g
7.88 mole ------ ?
mass = 7.88 * 204.40 / 1
mass = 1610.672 g
hope this helps!
Answer:
About 1.48 M.
Explanation:
The formula for molarity is mol/L.
So firstly, you must find the amount of moles in 250 grams of NaCl.
I do this by using stoichiometry. First, I find how nany grams are in a single mole of NaCl. This is around 58.44 grams/mole. Now that I know this, I can now use a stoich table. (250 g NaCl * 1 mol NaCl / 58.44 g NaCl). I plug this into my calculator.
I get that 250 grams of NaCl is equal to about 4.28 moles.
Now I just plug into the formula!
4.28 moles/2.9 L = about 1.48
<em><u>I've</u></em><em><u> </u></em><em><u>attached</u></em><em><u> </u></em><em><u>a </u></em><em><u>picture </u></em><em><u>of </u></em><em><u>my </u></em><em><u>personal </u></em><em><u>notes </u></em><em><u>below </u></em><em><u>which </u></em><em><u>shows </u></em><em><u>work </u></em><em><u>I </u></em><em><u>have </u></em><em><u>done</u></em><em><u> </u></em><em><u>in </u></em><em><u>similar </u></em><em><u>equations.</u></em>