type of friction that opposes the motion of an object traveling either through liquid or gas is known as <u>drag</u><u>.</u>
True
Carbon monoxide is a primary pollutant which no odor results from incomplete combustion of fuel. The man sources are gasoline and burning of biomass.
Depending on the source of emission, pollutants can be classified into two groups that is primary and secondary pollutants.
A primary pollutant is emitted in the atmosphere directly from a source. It can be either natural sch as volcanic eruptions, sandstorms or man-made that is due to industrial and vehicle emissions. Examples of primary pollutants are nitrogen oxides, carbon monoxide and particulate matter.
Secondary pollutant is due to interactions between primary and secondary pollutants. These can be chemical or physical interactions. Examples are photo-chemical oxidants and secondary particulate matter.
Therefore, carbon monoxide CO is a primary pollutant.
Alligators, Crocodiles, Anacondas, Beavers, Fish , Frogs and MANY more.
~mathnerdz
Answer:
Option E. Zirconium
Explanation:
From the question given above, the following data were obtained:
Length of side (L) of cube = 0.2 cm
Mass (m) of cube = 52 mg
Name of the unknown metal =?
Next, we shall determine the volume of the cube. This can be obtained as follow:
Length of side (L) of cube = 0.2 cm
Volume (V) of the cube =?
V = L³
V = 0.2³
V = 0.008 cm³
Next, we shall convert 52 mg to g. This can be obtained as follow:
1000 mg = 1 g
Therefore,
52 mg = 52 mg × 1 g / 1000 mg
52 mg = 0.052 g
Thus, 52 mg is equivalent to 0.052 g.
Next, we shall determine the density of the unknown metal. This can be obtained as follow:
Mass = 0.052 g.
Volume = 0.008 cm³
Density =?
Density = mass / volume
Density = 0.052 / 0.008
Density of the unknown metal = 6.5 g/cm³
Comparing the density of the unknown metal i.e 6.5 g/cm³ with those given in table in the above, we can conclude that the unknown metal is zirconium
Answer:
6.4 × 10^-10 M
Explanation:
The molar solubility of the ions in a compound can be calculated from the Ksp (solubility constant).
CaF2 will dissociate as follows:
CaF2 ⇌Ca2+ + 2F-
1 mole of Calcium ion (x)
2 moles of fluorine ion (2x)
NaF will also dissociate as follows:
NaF ⇌ Na+ + F-
Where Na+ = 0.25M
F- = 0.25M
The total concentration of fluoride ion in the solution is (2x + 0.25M), however, due to common ion effect i.e. 2x<0.25, 2x can be neglected. This means that concentration of fluoride ion will be 0.25M
Ksp = {Ca2+}{F-}^2
Ksp = {x}{0.25}^2
4.0 × 10^-11 = 0.25^2 × x
4.0 × 10^-11 = 0.0625x
x = 4.0 × 10^-11 ÷ 6.25 × 10^-2
x = 4/6.25 × 10^ (-11+2)
x = 0.64 × 10^-9
x = 6.4 × 10^-10
Therefore, the molar solubility of CaF2 in NaF solution is 6.4 × 10^-10M