1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ulleksa [173]
4 years ago
14

What are the kinematic formulas?​

Physics
1 answer:
12345 [234]4 years ago
7 0

Here's a picture of Kinematic formulas

The kinematic formulas are a set of formulas that relate the five kinematic variables listed below.

Δx - Displacement

t - Time interval

v0 - Initial velocity

v- Final velocity

a - Constant acceleration

You might be interested in
Read the scenario. A car travels 25 m/s forward for 10 s. Which option accurately identifies the measurements within the scenari
Phantasy [73]

Explanation:

It is given that,

A car travels 25 m/s forward for 10 s.

Solution,

For a vector, a quantity must have both magnitude as well as the direction. For a scalar, a quantity have only the magnitude. In this case, the car moves in forward direction.  This is the only difference between the vector and the scalar.

Out of given option,s the correct option is (c) "The measurement 25 m/s is the only vector quantity because it is a measurement of speed".

5 0
3 years ago
A flat uniform circular disk (radius = 2.30 m, mass = 1.00 ✕ 102 kg) is initially stationary. The disk is free to rotate in the
Vadim26 [7]

The resulting angular speed = 0.6 rad / s.

<u>Explanation:</u>

Here there is no external torque acting on the system thus we can apply the law of conservation of angular  momentum  

Angular momentum of the man = Iω

Where I = Inertia of the man about the axis of rotation

or         I = M r 2

            I  = 50 * 1.25*1.25 = 78.125

w = Angular velocity of the man, that can be calculated as follows

Tangential velocity of man = v = 2m/s  

So time taken to describe this circle is t = (2*pi* r) / v

Now angle described in 1 revolution θ = 2*pi radians

This angle is subtended in time t = (2*pi* r) / v

Thus angular speed = w = θ/t = 2*pi* ( v/ 2π r) = v/r = 2.70 / 1.25 = 2.16 rad/s

So angular momentum of man = Iw = 78.125 * 2.16 = 168.75.

To conserve the angular momentum before and after,

Angular momentum of disk = angular momentum of the man  

           i.e.             Iw of disk = 168.75

                                disk of I = (disk of M*R^2) / 2

                                              = (1.00 * 102 * 2.30 * 2.30) / 2

                                              = 269.79

                 Thus 269.79 of disk of w = 168.75

      Resulting angular speed of disk = 168.75 / 269.79 = 0.6 ras / s

7 0
3 years ago
What would be most useful to help make a simple compass a nonmetal bar,a round metal can,a small iron nail,or a Quartz needle
pav-90 [236]
Iron nail. the rest of those are not iron or some form of magnetic material.
5 0
3 years ago
Read 2 more answers
A 2.00-m long uniform beam has a mass of 4.00 kg. The beam rests on a fulcrum that is 1.20 m from its left end. In order for the
Shalnov [3]

Answer:

x ’= 1,735 m,  measured from the far left

Explanation:

For the system to be in equilibrium, the law of rotational equilibrium must be fulfilled.

Let's fix a reference system located at the point of rotation and that the anticlockwise rotations have been positive

             

They tell us that we have a mass (m1) on the left side and another mass (M2) on the right side,

the mass that is at the left end x = 1.2 m measured from the pivot point, the mass of the right side is at a distance x and the weight of the body that is located at the geometric center of the bar

           x_{cm} = 1.2 -1

          x_ {cm} = 0.2 m

          Σ τ = 0

          w₁ 1.2 + mg 0.2 - W₂ x = 0

          x = \frac{m_1 g\ 1.2 \ + m g \ 0.2}{M_2 g}

          x = \frac{m_1 \ 1.2 \ + m \ 0.2 }{M_2}

let's calculate

          x = \frac{2.9 \ 1.2 \ + 4 \ 0.2 }{8.00}2.9 1.2 + 4 0.2 / 8

           

          x = 0.535 m

measured from the pivot point

measured from the far left is

           x’= 1,2 + x

           x'=  1.2 + 0.535

           x ’= 1,735 m

8 0
3 years ago
A small block is attached to an ideal spring and is moving in SHM on a horizontal, frictionless surface. When the amplitude of t
Maslowich

Answer:

a) The time taken to travel from 0.18 m to -0.18m when the amplitude is doubled = 2.76 s

b) The time taken to travel from 0.09 m to -0.09 m when the amplitude is doubled = 0.92 s

Explanation:

a) The period of a simple harmonic motion is given as T = (1/f) = (2π/w)

It is evident that the period doesn't depend on amplitude, that is, it is independent of amplitude.

Hence, the time it would take the block to move from its amplitude point to the negative of the amplitude point (0.09 m to -0.09 m) in the first case will be the same time it will take the block to move from its amplitude point to negative of the amplitude point in the second case (0.18 m to -0.18 m).

Hence, time taken to travel from 0.18 m to -0.18m when the amplitude is doubled is 2.76 s

b) Now that the amplitude has been doubled, the time taken to move from amplitude point to the negative amplitude point in simple harmonic motion, just like with waves, is exactly half of the time period.

The time period is defined as the time taken to complete a whole cycle and a while cycle involves movement from the amplitude to point to the negative amplitude point then fully back to the amplitude point. Hence,

0.5T = 2.76 s

T = 2 × 2.76 = 5.52 s

Note that the displacement of a body undergoing simple harmonic motion from the equilibrium position is given as

y = A cos wt (provided that there's no phase difference, that is, Φ = 0)

A = amplitude = 0.18 m

w = (2π/5.52) = 1.138 rad/s

When y = 0.09 m, the time = t₁₂ = ?

0.09 = 0.18 Cos 1.138t₁ (angles in radians)

Cos 1.138t₁ = 0.5

1.138t₁ = arccos (0.5) = (π/3)

t₁ = π/(3×1.138) = 0.92 s

When y = -0.09 m, the time = t₂ = ?

-0.09 = 0.18 Cos 1.138t₂ (angles in radians)

Cos 1.138t₂ = -0.5

1.138t₂ = arccos (-0.5) = (2π/3)

t₂ = 2π/(3×1.138) = 1.84 s

Time taken to move from y = 0.09 m to y = -0.09 m is then t = t₂ - t₁ = 1.84 - 0.92 = 0.92 s

Hope this Helps!!!

3 0
3 years ago
Other questions:
  • When the solar system formed the spheres that lost most of their gases became the?
    10·1 answer
  • Kelly sits on a rock. Her weight is an action force. Describe the reaction force.
    12·2 answers
  • Downstream peripheral pulses have a higher pulse pressure because the pressure wave travels faster than the blood itself. What o
    15·1 answer
  • The acceleration due to gravity on Earth is 9.80 m/s2. An African elephant can have a mass up to 6,050 kg. What is its weight?
    5·1 answer
  • What characterizes moral development in middle and late childhood? Give an Example?
    7·1 answer
  • Within each biome,how can the environment be organized into levels from complex to simple?
    7·1 answer
  • Question in picture.
    5·2 answers
  • Each of 100 identical blocks siting on a frictionless surface is connected to the next bloc by a massless string. The first bloc
    10·1 answer
  • A car of mass 750 kg has an initial speed of 75 mph. Traveling in a straight line, its speed is increased uniformly to 120 mph i
    5·1 answer
  • How far moves in 95g ball by applying 200 Newton Force if 14 KJ of energy is transferred​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!