1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler [38]
3 years ago
15

If two balls collide with each other, they will move apart at the same speed if

Physics
2 answers:
denis-greek [22]3 years ago
7 0
A.
if you have seen a newton's cradle this will make sense.

in order for both of them to travel at the same speed, the balls need to have the same mass and the speed to begin with tocontinue to travel at the same speed because mass can affect the impact of the force on the balls by each other, causing each ball to have different speeds.
Kryger [21]3 years ago
6 0
Answer a. would be correct. Since momentum is conserved, Δmv must be constant.
You might be interested in
Two long, straight wires are separated by a distance of 9.15 cm . One wire carries a current of 2.79 A , the other carries a cur
Dafna1 [17]

Answer:

The force is the same

Explanation:

The force per meter exerted between two wires carrying a current is given by the formula

\frac{F}{L}=\frac{\mu_0 I_1 I_2}{2\pi r}

where

\mu_0 is the vacuum permeability

I_1 is the current in the 1st wire

I_2 is the current in the 2nd wire

r is the separation between the wires

In this problem

I_1=2.79 A\\I_2=4.36 A\\r = 9.15 cm = 0.0915 m

Substituting, we find the force per unit length on the two wires:

\frac{F}{L}=\frac{(4\pi \cdot 10^{-7})(2.79)(4.36)}{2\pi (0.0915)}=2.66\cdot 10^{-5}N

However, the formula is the same for the two wires: this means that the force per meter exerted on the two wires is the same.

The same conclusion comes out  from Newton's third law of motion, which states that when an object A exerts a force on an object B, then object B exerts an equal and opposite force on object A (action-reaction). If we apply the law to this situation, we see that the force exerted by wire 1 on wire 2 is the same as the force exerted by wire 2 on wire 1 (however the direction is opposite).

3 0
3 years ago
A common misconception is that an object always moves when a force acts on it. Why is this statement incorrect? Explain the conc
dsp73

Answer:

The statement is incorrect because, a force acting on an object does not necessarily have to produce motion.

People have the misconception that when a force acts on an object it always produces motion

Explanation:

The statement is incorrect because, a force acting on an object does not necessarily have to produce motion. It could be in static equilibrium where the net force is zero and produces not motion. The body could also be in dynamic equilibrium when  no net force acts on it moving at a constant velocity. But here we are concerned with static equilibrium since the body does not move at all.

People have the misconception that when a force acts on an object it always produces motion and, we have seen from the above tat its not always true.

3 0
3 years ago
A drowsy cat spots a flowerpot that sails first up and then down past an open window. the pot was in view for a total of 0.49 s,
Alika [10]

For this case, let's assume that the pot spends exactly half of its time going up, and half going down, i.e. it is visible upward for 0.245 s and downward for 0.245 s. Let us take the bottom of the window to be zero on a vertical axis pointing upward. All calculations will be made in reference to this coordinate system. <span>

An initial condition has been supplied by the problem: 

s=1.80m when t=0.245s 

<span>This means that it takes the pot 0.245 seconds to travel upward 1.8m. Knowing that the gravitational acceleration acts downward constantly at 9.81m/s^2, and based on this information we can use the formula:

s=(v)(t)+(1/2)(a)(t^2) 

to solve for v, the initial velocity of the pot as it enters the cat's view through the window. Substituting and solving (note that gravitational acceleration is negative since this is opposite our coordinate orientation): 

(1.8m)=(v)(0.245s)+(1/2)(-9.81m/s^2)(0.245s)^2 

v=8.549m/s 

<span>Now we know the initial velocity of the pot right when it enters the view of the window. We know that at the apex of its flight, the pot's velocity will be v=0, and using this piece of information we can use the kinematic equation:

(v final)=(v initial)+(a)(t) 

to solve for the time it will take for the pot to reach the apex of its flight. Because (v final)=0, this equation will look like 

0=(v)+(a)(t) 

Substituting and solving for t: 

0=(8.549m/s)+(-9.81m/s^2)(t) 

t=0.8714s 

<span>Using this information and the kinematic equation we can find the total height of the pot’s flight:

s=(v)(t)+(1/2)(a)(t^2) </span></span></span></span>

s=8.549m/s (0.8714s)-0.5(9.81m/s^2)(0.8714s)^2

s=3.725m<span>

This distance is measured from the bottom of the window, and so we will need to subtract 1.80m from it to find the distance from the top of the window: 

3.725m – 1.8m=1.925m</span>

 

Answer:

<span>1.925m</span>

3 0
3 years ago
A 594 Ω resistor, an uncharged 1.3 μF capacitor, and a 6.53 V emf are connected in series. What is the current in milliamps afte
ivanzaharov [21]

Answer:

6.88 mA

Explanation:

Given:

Resistance, R = 594 Ω

Capacitance = 1.3 μF

emf, V = 6.53 V

Time, t = 1 time constant

Now,

The initial current, I₀ = \frac{\textup{V}}{\textup{R}}

or

I₀ = \frac{\textup{6.53}}{\textup{594}}

or

I₀ = 0.0109 A

also,

I = I_0[1-e^{-\frac{t}{\tau}}]

here,

τ = time constant

e = 2.717

on substituting the respective values, we get

I = 0.0109[1-e^{-\frac{\tau}{\tau}}]

or

I = 0.0109[1-2.717^{-1}]

or

I = 0.00688 A

or

I = 6.88 mA

5 0
3 years ago
7 the density of the american white oak tree is 752 kilograms per cubic meter. if the trunk of an american white oak tree has a
alexdok [17]

First, we determine the volume of the trunk by finding first the radius from the circumference through the equation,

<span>                                                            C = 2πr</span>

<span>                                                            r = C/2π</span>

Substituting the known values,

<span>                                                            r = 4.5/2π = 0.716 m</span>

Then, we calculate for the volume through the equation,

<span>                                                            V = πr2h</span>

<span>                                                V = π(0.716 m)2(8m) = 12.9 m3</span>

Multiplying the calculated value to the density will give the mass as,

<span>                                                Mass = (12.9 m3)(752 kg/m3) = <span>9699.36 kg</span></span>

3 0
3 years ago
Other questions:
  • Many processes help to shape Earth’s surface. Starting with a rock, in what order would you expect the following Earth processes
    14·1 answer
  • Flowchart symbols
    11·1 answer
  • A ferris wheel car with a mass of 350 kg, travels in a
    10·1 answer
  • A car of mass 1500 kg travels due East with a constant speed of 25.0 m/s. Eventually it turns right, and travels due South with
    7·1 answer
  • I need this question's answer lo long define rest <br>​
    6·1 answer
  • Which tools would be use to find an irregularly shaped object’s mass and volume?
    11·1 answer
  • The sun doesn't set during what season and at what latitude?
    5·1 answer
  • An object is 9.00 cm tall. The image is 5.76 cm tall, and 14 cm
    5·1 answer
  • Sam is pulling a box up to the second story of his apartment via a string. The box weighs 53.3 kg and starts from rest on the gr
    8·1 answer
  • A kind of tempory magnet​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!