Answer:
5.8μg
Explanation:
According to the rate or decay law:
N/N₀ = exp(-λt)------------------------------- (1)
Where N = Current quantity, μg
N₀ = Original quantity, μg
λ= Decay constant day⁻¹
t = time in days
Since the half life is 4.5 days, we can calculate the λ from (1) by substituting N/N₀ = 0.5
0.5 = exp (-4.5λ)
ln 0.5 = -4.5λ
-0.6931 = -4.5λ
λ = -0.6931 /-4.5
=0.1540 day⁻¹
Substituting into (1) we have :
N/N₀ = exp(-0.154t)----------------------------- (2)
To receive 5.0 μg of the nuclide with a delivery time of 24 hours or 1 day:
N = 5.0 μg
N₀ = Unknown
t = 1 day
Substituting into (2) we have
[5/N₀] = exp (-0.154 x 1)
5/N₀ = 0.8572
N₀ = 5/0.8572
= 5.8329μg
≈ 5.8μg
The Chemist must order 5.8μg of 47-CaCO3
Answer:
Option C. Triple the number of moles
Explanation:
From the ideal gas equation:
PV = nRT
Where:
P is the pressure
V is the volume
n is the number of mole
R is the gas constant
T is the absolute temperature.
Making V the subject of the above equation, we have:
PV = nRT
Divide both side by P
V = nRT / P
Thus, we can say that the volume (V) is directly proportional to both the number of mole (n) and absolute temperature (T) and inversely proportional to the pressure (P). This implies that and increase in either the number of mole, the absolute temperature and a decrease in the presence will cause the volume to increase.
Thus, the correct option is option C triple the number of moles. This can further be seen as illustrated below:
Initial volume (V1) = 12 L
Initial mole (n1) = 0.5 mole
Final mole (n2) = triple the initial mole = 3 × 0.5 = 1.5 mole
Final volume (V2) =?
From:
V = nRT / P, keeping T and P constant, we have:
V1/n1 = V2/n2
12/0.5 = V2/1.5
24 = V2/1.5
Cross multiply
V2 = 24 × 1.5
V2 = 36 L.
Thus Option C gives the correct answer to the question.
Answer:
Spectroscopy
Explanation:
They can determine its composition based on these wavelengths. The most common method astronomers use to determine the composition of stars, planets, and other objects is spectroscopy