Answer:
131 atm
Explanation:
To find the new pressure, you need to use Boyle's Law:
P₁V₁ = P₂V₂
In this equation, "P₁" and "V₁" represent the initial pressure and volume. "P₂" and "V₂" represent the final pressure and volume. You can find the new pressure (P₂) by plugging the given values into equation and simplifying.
P₁ = 3.88 atm P₂ = ? atm
V₁ = 7.74 L V₂ = 0.23 L
P₁V₁ = P₂V₂ <----- Boyle's Law
(3.88 atm)(7.74 L) = P₂(0.23 L) <----- Insert values
30.0312 = P₂(0.23 L) <----- Simplify left side
131 = P₂ <----- Divide both sides by 0.23
Answer:
1 x 10^-12 mol dm^-3
Explanation:
[H+] = 10 ^ -pH
Therefore, pH 12 = 1 x 10^-12 hydrogen ion concentration
Answer:
Boiling point for the solution is 100.237°C
Explanation:
We must apply colligative property of boiling point elevation
T° boiling solution - T° boiling pure solvent = Kb . m
m = molalilty (a given data)
Kb = Ebulloscopic constant (a given data)
We know that water boils at 100°C so let's replace the information in the formula.
T° boiling solution - 100°C = 0.512 °C/m . 0.464 m
T° boiliing solution = 0.512 °C/m . 0.464 m + 100°C → 100.237 °C
Explanation:
The given data is as follows.
Mass of antimony = 19.75 g
Molar mass of Sb = 121.76 g/mol
Therefore, calculate number of moles of Sb as follows.
Moles of Sb = 
= 
= 0.162 mol
Mass of oxygen given is 6.5 g and molar mass of oxygen is 16 g/mol. Hence, moles of oxygen will be calculated as follows.
Moles of oxygen = 
= 
= 0.406 mol
Hence, ratio of moles of Sb and O will be as follows
Sb : O
1 : 2.5
We multiply both the ratio by 2 in order to get a whole number. Therefore, the ratio will be 2 : 5.
Thus, we can conclude that the empirical formula of the given oxide is
.