A. Allow movement.
Muscles connect to your skeleton and they contract and move the skeleton along. <span>They help the process of movement happen in a smoother manner.</span>
Answer:
The number of complete vibration or wave made in
one second is called frequency.
<span>(1) </span>Through the Second
Law of motion, the equation for Force is:
F = m x a
Where
m is mass and a is acceleration (deceleration)
<span>(2) </span>Distance is
calculated through the equation,
D
= Vi^2 / 2a
Where
Vi is initial velocity
<span>(3) </span>Work is calculated
through the equation,
W = F x D
Substituting
the known values,
Part
A:
<span>(1) </span> F = (85
kg)(2 m/s^2) = 170 N
<span>(2) </span> D = (37
m/s)^2 / (2)(2 m/s^2) = 9.25 m
<span>(3) </span> W = (170
N)(9.25 m) = 1572.5 J
Part
B:
<span>(1) </span> F = (85 kg)(4
m/s^2) = 340 N
<span>(2) </span>D = (37 m/s)^2 /
(2)(4 m/s^2) = 4.625 m
<span>(3) </span><span> W = (340
N)(4.625 m) = 1572.5 J</span>
6 cups honey your welcome
Answer:
B. Axial stress divided by axial strain
Explanation:
Elasticity:
It is the tendency of an object to deform along the axis when an opposing force is applied without facing permanent change in shape.
Plasticity:
When an object crosses the elasticity limit, it enters plasticity where the change due to stress is permanent and the object might even break.
Yield strength:
Yield strength is the point of maximum bearable stress that indicates the limit of elasticity.
Our case:
As the stress applied is less than the yield strength, the rod is still in the elasticity state and its modulus can be calculated.
Modulus of Elasticity = Stress along axis/Ratio of change in length to original length
Axial strain is basically the ratio of change in length to original length.
So, Modulus of Elasticity = Axial Stress/ Axial Strain