Answer:
The astronaut will be propelled towards the shuttle at the rate of 0.4 m/s.
Explanation:
Given;
mass of the astronaut, m₁ = 95 kg
mass of the hammer thrown, m₂ = 2 kg
velocity of the hammer, v₂ = 19 m/s
let the recoil velocity of the shuttle = v₁
Apply the principle of conservation of linear momentum;
m₁v₁ = m₂v₂
v₁ = m₂v₂/m₁
v₁ = (2 x 19) / 95
v₁ = 0.4 m/s
Therefore, the astronaut will be propelled towards the shuttle at the rate of 0.4 m/s.
Answer:
3.90 degrees
Explanation:
Let g= 9.81 m/s2. The gravity of the 30kg grocery cart is
W = mg = 30*9.81 = 294.3 N
This gravity is split into 2 components on the ramp, 1 parallel and the other perpendicular to the ramp.
We can calculate the parallel one since it's the one that affects the force required to push up
F = WsinΘ
Since customer would not complain if the force is no more than 20N
F = 20



So the ramp cannot be larger than 3.9 degrees
The goalkeeper at his goal cannot kick a soccer ball into the opponent’s goal without the ball touching the ground
Explanation:
Consider the vertical motion of ball,
We have equation of motion v = u + at
Initial velocity, u = u sin θ
Final velocity, v = 0 m/s
Acceleration = -g
Substituting
v = u + at
0 = u sin θ - g t

This is the time of flight.
Consider the horizontal motion of ball,
Initial velocity, u = u cos θ
Acceleration, a =0 m/s²
Time,
Substituting
s = ut + 0.5 at²

This is the range.
In this problem
u = 30 m/s
g = 9.81 m/s²
θ = 45° - For maximum range
Substituting

Maximum horizontal distance traveled by ball without touching ground is 45.87 m, which is less than 95 m.
So the goalkeeper at his goal cannot kick a soccer ball into the opponent’s goal without the ball touching the ground