Acceleration=9.81m/s^2
initial velocity=0m/s
time=.28s
We have to find final velocity.
The equation we use is
Final velocity=initial velocity+acceleration x time
Vf=0m/s+(9.81m/s^2)(.28s)
Vf=2.7468m/s
We would round this to:
Vf (final velocity)=2.7m/s
Answer: Physical changes only change the appearance of a substance, not its chemical composition. Chemical changes cause a substance to change into an entirely substance with a new chemical formula. Chemical changes are also known as chemical reactions.
Explanation:
Answer:
160 kg
12 m/s
Explanation:
= Mass of first car = 120 kg
= Mass of second car
= Initial Velocity of first car = 14 m/s
= Initial Velocity of second car = 0 m/s
= Final Velocity of first car = -2 m/s
= Final Velocity of second car
For perfectly elastic collision

Applying in the next equation


Mass of second car = 160 kg
Velocity of second car = 12 m/s
"These deep-ocean currents are driven by differences in the water's density, which is controlled by temperature (thermo) and salinity (haline). This process is known as thermohaline circulation. In the Earth's polar regions ocean watergets very cold, forming sea ice." this is what I found...
Yes. Even greater. Air resistance or drag becomes harder the faster an object goes. This is why when cars reach their max speed they don't accelerate as fast, because they are pushing harder against the wind. If I take a tennis ball and shoot it down a bottomless pit, a 400 kph, the drag will slow the ball down till it reaches terminal velocity.