Answer:
θ₀ = 84.78° (OR) 5.22°
Explanation:
This situation can be treated as projectile motion. The parameters of this projectile motion are:
R = Range of Projectile = 150 m
V₀ = Launch Speed of Projectile = 90 m/s
g = 9.8 m/s²
θ₀ = Launch angle (OR) Angle of Elevation = ?
The formula for range of a projectile is given as:
R = V₀² Sin 2θ₀/g
Sin 2θ₀ = Rg/V₀²
Sin 2θ₀ = (150 m)(9.8 m/s²)/(90 m/s)²
2θ₀ = Sin⁻¹ (0.18)
θ₀ = 10.45°/2
<u>θ₀ = 5.22°</u>
Also, we know that for the same launch velocity the range will be same for complementary angles. Therefore, another possible value of angle is:
θ₀ = 90° - 5.22°
<u>θ₀ = 84.78°</u>
Answer:
I mean this is what I think
Explanation:
you would need to place a rock on top of each other until you reach the ceiling
It seems logical to me
Answer:
Electrical force, F = 90 N
Explanation:
It is given that,
Charge on sphere 1, 
Charge on sphere 2, 
Distance between two spheres, d = 6 cm = 0.06 m
Let F is the electrical force between them. It is given by the formula of electric force which is directly proportional to the product of charges and inversely proportional to the square of distance between them such that,


F = 90 N
So, the electrical force between them is 90 N. Hence, this is the required solution.
Answer:
Maybe because you not throwing it stringer or lighter. And you need to control yourself prob. maybe you did line it correctly or maybe your just bad to be honest. -.-
Explanation:
Answer:
Reflection involves a change in direction of waves when they bounce off a barrier. Refraction of waves involves a change in the direction of waves as they pass from one medium to another.